Karmakar, Chandrabali und Datcu, Mihai (2022) A Framework for Interactive Visual Interpretation of Remote Sensing Data. IEEE Geoscience and Remote Sensing Letters, 19, Seiten 1-5. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2022.3161959. ISSN 1545-598X.
PDF
- Nur DLR-intern zugänglich bis September 2025
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9745881
Kurzfassung
Machine learning methods have shown tremendous success in understanding earth observation data; however, recently, there is a rising claim toward explainable machine learning approaches. Concerned researchers found interpretable visualizations to be greatly helpful in understanding how a model works. In this research, we propose a framework for interactive and interpretable visualization of remote sensing data using two machine learning models and an Elasticsearch (ES) database. Two explainable machine learning models, namely, bag-of-visual-words (BoVWs) and latent Dirichlet allocation (LDA) are chosen to model the data in an unsupervised manner and give a textual representation. The textualized remote sensing data are stored in an ES database. This framework offers several fast content-based search functionalities exploiting the full-text query capabilities of ES based on the respective representations and also offers an efficient storage mechanism for the data.
elib-URL des Eintrags: | https://elib.dlr.de/206354/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||
Titel: | A Framework for Interactive Visual Interpretation of Remote Sensing Data | ||||||||||||
Autoren: |
| ||||||||||||
Datum: | 5 September 2022 | ||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||
Referierte Publikation: | Ja | ||||||||||||
Open Access: | Nein | ||||||||||||
Gold Open Access: | Nein | ||||||||||||
In SCOPUS: | Ja | ||||||||||||
In ISI Web of Science: | Ja | ||||||||||||
Band: | 19 | ||||||||||||
DOI: | 10.1109/LGRS.2022.3161959 | ||||||||||||
Seitenbereich: | Seiten 1-5 | ||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||
ISSN: | 1545-598X | ||||||||||||
Status: | veröffentlicht | ||||||||||||
Stichwörter: | Content-based search, elasticsearch (ES), explainable machine learning, interpretable visualization, query, remote sensing. | ||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Optische Fernerkundung, R - Fernerkundung u. Geoforschung | ||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||
Hinterlegt von: | Karmakar, Chandrabali | ||||||||||||
Hinterlegt am: | 13 Sep 2024 09:13 | ||||||||||||
Letzte Änderung: | 13 Sep 2024 09:13 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags