elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Accessibility | Contact | Deutsch
Fontsize: [-] Text [+]

Pushing the frontiers in climate modelling and analysis with machine learning

Eyring, Veronika and Collins, William D. and Gentine, Pierre and Barnes, Elizabeth A. and Barreiro, Marcelo and Beucler, Tom and Bocquet, Marc and Bretherton, Christopher S. and Christensen, Hannah M. and Dagon, Katherine and Gagne, David John and Hall, David and Hammerling, Dorit and Hoyer, Stephan and Iglesias-Suarez, Fernando and Lopez-Gomez, Ignacio and McGraw, Marie C. and Meehl, Gerald A. and Molina, Maria J. and Monteleoni, Claire and Mueller, Juliane and Pritchard, Michael S. and Rolnick, David and Runge, Jakob and Stier, Philip and Watt-Meyer, Oliver and Weigel, Katja and Yu, Rose and Zanna, Laure (2024) Pushing the frontiers in climate modelling and analysis with machine learning. Nature Climate Change, pp. 1-13. Springer. doi: 10.1038/s41558-024-02095-y. ISSN 1758-678X.

Full text not available from this repository.

Official URL: https://dx.doi.org/10.1038/s41558-024-02095-y

Abstract

Climate modelling and analysis are facing new demands to enhance projections and climate information. Here we argue that now is the time to push the frontiers of machine learning beyond state-of-the-art approaches, not only by developing machine-learning-based Earth system models with greater fidelity, but also by providing new capabilities through emulators for extreme event projections with large ensembles, enhanced detection and attribution methods for extreme events, and advanced climate model analysis and benchmarking. Utilizing this potential requires key machine learning challenges to be addressed, in particular generalization, uncertainty quantification, explainable artificial intelligence and causality. This interdisciplinary effort requires bringing together machine learning and climate scientists, while also leveraging the private sector, to accelerate progress towards actionable climate science.

Item URL in elib:https://elib.dlr.de/206217/
Document Type:Article
Additional Information:Projekt USMILE
Title:Pushing the frontiers in climate modelling and analysis with machine learning
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Eyring, VeronikaDLR, IPAhttps://orcid.org/0000-0002-6887-4885UNSPECIFIED
Collins, William D.Lawrence Berkeley National Laboratory, California USAUNSPECIFIEDUNSPECIFIED
Gentine, PierreColumbia University, New York, USAhttps://orcid.org/0000-0002-0845-8345UNSPECIFIED
Barnes, Elizabeth A.Colorado State University, Fort Collins, CO, USAhttps://orcid.org/0000-0003-4284-9320UNSPECIFIED
Barreiro, MarceloUniversidad de la República, Montevideo, Uruguayhttps://orcid.org/0000-0002-7819-1607UNSPECIFIED
Beucler, TomUniversity of Lausanne, Lausanne, Switzerlandhttps://orcid.org/0000-0002-5731-1040UNSPECIFIED
Bocquet, MarcCEREA Île-de-France, Francehttps://orcid.org/0000-0003-2675-0347UNSPECIFIED
Bretherton, Christopher S.Allen Institute for Artificial Intelligence, Seattle, WA, USAhttps://orcid.org/0000-0002-6712-8856UNSPECIFIED
Christensen, Hannah M.University of Oxford, Oxford, UK View author publications You can also searhttps://orcid.org/0000-0001-8244-0218UNSPECIFIED
Dagon, KatherineNCAR Boulder, CO, USAhttps://orcid.org/0000-0002-4518-8225UNSPECIFIED
Gagne, David JohnNCAR Boulder, CO, USAhttps://orcid.org/0000-0002-0469-2740UNSPECIFIED
Hall, DavidNVIDIA Corporation, Santa Clara, CA, USAhttps://orcid.org/0000-0002-0961-1196UNSPECIFIED
Hammerling, DoritColorado School of Mines, Golden, CO, USAUNSPECIFIEDUNSPECIFIED
Hoyer, StephanGoogle Research, Mountain View, CA, USAhttps://orcid.org/0000-0002-5207-0380UNSPECIFIED
Iglesias-Suarez, FernandoDLR, IPAhttps://orcid.org/0000-0003-3403-8245UNSPECIFIED
Lopez-Gomez, IgnacioGoogle Research, Mountain View, CA, USAhttps://orcid.org/0000-0002-7255-5895UNSPECIFIED
McGraw, Marie C.Colorado State University, Fort Collins, CO, USAhttps://orcid.org/0000-0002-4469-226XUNSPECIFIED
Meehl, Gerald A.NCAR Boulder, CO, USAhttps://orcid.org/0000-0002-8760-9534UNSPECIFIED
Molina, Maria J.NCAR Boulder, CO, USAhttps://orcid.org/0000-0001-8539-8916UNSPECIFIED
Monteleoni, ClaireUniversity of Colorado, Boulder, CA, USAhttps://orcid.org/0000-0002-9488-0517UNSPECIFIED
Mueller, JulianeNational Renewable Energy Laboratory, Golden, CO, USAhttps://orcid.org/0000-0001-8627-1992UNSPECIFIED
Pritchard, Michael S.University of California, Irvine, Irvine, CA, USAUNSPECIFIEDUNSPECIFIED
Rolnick, DavidMcGill University, Montreal, Quebec, Canadahttps://orcid.org/0000-0002-2855-393XUNSPECIFIED
Runge, JakobDRL, Jenahttps://orcid.org/0000-0002-0629-1772UNSPECIFIED
Stier, PhilipUniversity of Oxford, Oxford, UKhttps://orcid.org/0000-0002-1191-0128UNSPECIFIED
Watt-Meyer, OliverAllen Institute for Artificial Intelligence, Seattle, WA, USAhttps://orcid.org/0000-0001-8419-1526UNSPECIFIED
Weigel, KatjaDLR, IPAhttps://orcid.org/0000-0001-6133-7801UNSPECIFIED
Yu, RoseUC San DiegoUNSPECIFIEDUNSPECIFIED
Zanna, LaureNew York UniversityUNSPECIFIEDUNSPECIFIED
Date:23 August 2024
Journal or Publication Title:Nature Climate Change
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
DOI:10.1038/s41558-024-02095-y
Page Range:pp. 1-13
Publisher:Springer
ISSN:1758-678X
Status:Published
Keywords:climate modelling, anaysis, key machine learning
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Space
HGF - Program Themes:Earth Observation
DLR - Research area:Raumfahrt
DLR - Program:R EO - Earth Observation
DLR - Research theme (Project):R - Atmospheric and climate research
Location: Oberpfaffenhofen
Institutes and Institutions:Institute of Atmospheric Physics > Earth System Model Evaluation and Analysis
Deposited By: Ziegele, Brigitte
Deposited On:24 Sep 2024 10:50
Last Modified:17 Feb 2025 11:07

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
OpenAIRE Validator logo electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.