Heuer, Helge Gustav Helmut und Schwabe, Mierk und Gentine, Pierre und Giorgetta, Marco A. und Eyring, Veronika (2024) Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON. Journal of Advances in Modeling Earth Systems, Seiten 1-26. Wiley. doi: 10.1029/2024MS004398. ISSN 1942-2466.
PDF
- Verlagsversion (veröffentlichte Fassung)
2MB |
Offizielle URL: https://doi.org/10.1029/2024MS004398
Kurzfassung
Machine learning (ML)-based parameterizations have been developed for Earth System Models (ESMs) with the goal to better represent subgrid-scale processes or to accelerate computations. ML-based parameterizations within hybrid ESMs have successfully learned subgrid-scale processes from short high-resolution simulations. However, most studies used a particular ML method to parameterize the subgrid tendencies or fluxes originating from the compound effect of various small-scale processes (e.g., radiation, convection, gravity waves) in mostly idealized settings or from superparameterizations. Here, we use a filtering technique to explicitly separate convection from these processes in simulations with the Icosahedral Non-hydrostatic modeling framework (ICON) in a realistic setting and benchmark various ML algorithms against each other offline. We discover that an unablated U-Net, while showing the best offline performance, learns reverse causal relations between convective precipitation and subgrid fluxes. While we were able to connect the learned relations of the U-Net to physical processes this was not possible for the non-deep learning-based Gradient Boosted Trees. The ML algorithms are then coupled online to the host ICON model. Our best online performing model, an ablated U-Net excluding precipitating tracer species, indicates higher agreement for simulated precipitation extremes and mean with the high-resolution simulation compared to the traditional scheme. However, a smoothing bias is introduced both in water vapor path and mean precipitation. Online, the ablated U-Net significantly improves stability compared to the non-ablated U-Net and runs stable for the full simulation period of 180 days. Our results hint to the potential to significantly reduce systematic errors with hybrid ESMs.
elib-URL des Eintrags: | https://elib.dlr.de/206183/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
Titel: | Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | August 2024 | ||||||||||||||||||||||||
Erschienen in: | Journal of Advances in Modeling Earth Systems | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||
DOI: | 10.1029/2024MS004398 | ||||||||||||||||||||||||
Seitenbereich: | Seiten 1-26 | ||||||||||||||||||||||||
Verlag: | Wiley | ||||||||||||||||||||||||
ISSN: | 1942-2466 | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | Parameterization, Machine Learning, Convection, Subgrid, Climate Model, XAI | ||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Atmosphären- und Klimaforschung | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse | ||||||||||||||||||||||||
Hinterlegt von: | Heuer, Helge Gustav Helmut | ||||||||||||||||||||||||
Hinterlegt am: | 02 Sep 2024 14:17 | ||||||||||||||||||||||||
Letzte Änderung: | 02 Sep 2024 14:18 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags