elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON

Heuer, Helge Gustav Helmut und Schwabe, Mierk und Gentine, Pierre und Giorgetta, Marco A. und Eyring, Veronika (2024) Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON. Journal of Advances in Modeling Earth Systems, Seiten 1-26. Wiley. doi: 10.1029/2024MS004398. ISSN 1942-2466.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://doi.org/10.1029/2024MS004398

Kurzfassung

Machine learning (ML)-based parameterizations have been developed for Earth System Models (ESMs) with the goal to better represent subgrid-scale processes or to accelerate computations. ML-based parameterizations within hybrid ESMs have successfully learned subgrid-scale processes from short high-resolution simulations. However, most studies used a particular ML method to parameterize the subgrid tendencies or fluxes originating from the compound effect of various small-scale processes (e.g., radiation, convection, gravity waves) in mostly idealized settings or from superparameterizations. Here, we use a filtering technique to explicitly separate convection from these processes in simulations with the Icosahedral Non-hydrostatic modeling framework (ICON) in a realistic setting and benchmark various ML algorithms against each other offline. We discover that an unablated U-Net, while showing the best offline performance, learns reverse causal relations between convective precipitation and subgrid fluxes. While we were able to connect the learned relations of the U-Net to physical processes this was not possible for the non-deep learning-based Gradient Boosted Trees. The ML algorithms are then coupled online to the host ICON model. Our best online performing model, an ablated U-Net excluding precipitating tracer species, indicates higher agreement for simulated precipitation extremes and mean with the high-resolution simulation compared to the traditional scheme. However, a smoothing bias is introduced both in water vapor path and mean precipitation. Online, the ablated U-Net significantly improves stability compared to the non-ablated U-Net and runs stable for the full simulation period of 180 days. Our results hint to the potential to significantly reduce systematic errors with hybrid ESMs.

elib-URL des Eintrags:https://elib.dlr.de/206183/
Dokumentart:Zeitschriftenbeitrag
Titel:Interpretable Multiscale Machine Learning-Based Parameterizations of Convection for ICON
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Heuer, Helge Gustav HelmutDLR, IPAhttps://orcid.org/0000-0003-2411-7150166639907
Schwabe, MierkDLR, IPAhttps://orcid.org/0000-0001-6565-5890NICHT SPEZIFIZIERT
Gentine, PierreColumbia University, New York, USAhttps://orcid.org/0000-0002-0845-8345NICHT SPEZIFIZIERT
Giorgetta, Marco A.MPI für Meteorologie, Hamburghttps://orcid.org/0000-0002-4278-1963NICHT SPEZIFIZIERT
Eyring, VeronikaDRL, IPAhttps://orcid.org/0000-0002-6887-4885NICHT SPEZIFIZIERT
Datum:August 2024
Erschienen in:Journal of Advances in Modeling Earth Systems
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1029/2024MS004398
Seitenbereich:Seiten 1-26
Verlag:Wiley
ISSN:1942-2466
Status:veröffentlicht
Stichwörter:Parameterization, Machine Learning, Convection, Subgrid, Climate Model, XAI
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystemmodell -Evaluation und -Analyse
Hinterlegt von: Heuer, Helge Gustav Helmut
Hinterlegt am:02 Sep 2024 14:17
Letzte Änderung:02 Sep 2024 14:18

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.