elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Detecting Co-Seismic Landslides in GEE using Machine-Learning Algorithms on combined Multispectral and RADAR Imagery

Peters, Stefan und Liu, Jixue und Keppler, Gunnar und Wendleder, Anna und Xu, Peiliang (2024) Detecting Co-Seismic Landslides in GEE using Machine-Learning Algorithms on combined Multispectral and RADAR Imagery. Remote Sensing, 16 (10), Seiten 1-29. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/rs16101722. ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
9MB

Offizielle URL: https://www.mdpi.com/2072-4292/16/10/1722

Kurzfassung

Landslides, resulting from disturbances in slope equilibrium, pose a significant threat to landscapes, infrastructure, and human life. Triggered by factors such as intense precipitation, seismic activities, or volcanic eruptions, these events can cause extensive damage and endanger nearby communities. A comprehensive understanding of landslide characteristics, including spatio-temporal patterns, dimensions, and morphology, is vital for effective landslide disaster management. Existing remote sensing approaches mostly use either optical or synthetic aperture radar sensors. Integrating information from both these types of sensors promises greater accuracy for identifying and locating landslides. This study proposes a novel approach, the ML-LaDeCORsat (Machine Learning-based coseismic Landslide Detection using Combined Optical and Radar Satellite Imagery), that integrates freely available Sentinel-1, Palsar-2, and Sentinel-2 imagery data in Google Earth Engine (GEE). The approach also integrates relevant spectral indices and suitable bands used in a machine learning-based classification of coseismic landslides. The approach includes a robust and reproducible training and validation strategy and allows one to choose between five classifiers (CART, Random Forest, GTB, SVM, and Naive Bayes). Using landslides from four different earthquake case studies, we demonstrate the superiority of our approach over existing solutions in coseismic landslide identification and localization, providing a GTB-based detection accuracy of 87–92%. ML-LaDeCORsat can be adapted to other landslide events (GEE script is provided). Transfer learning experiments proved that our model can be applied to other coseismic landslide events without the need for additional training data. Our novel approach therefore facilitates quick and reliable identification of coseismic landslides, highlighting its potential to contribute towards more effective disaster management.

elib-URL des Eintrags:https://elib.dlr.de/206173/
Dokumentart:Zeitschriftenbeitrag
Titel:Detecting Co-Seismic Landslides in GEE using Machine-Learning Algorithms on combined Multispectral and RADAR Imagery
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Peters, StefanUniversity of South AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Liu, JixueUniversity of South AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Keppler, GunnarUniversity of South AustraliaNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wendleder, AnnaAnna.Wendleder (at) dlr.dehttps://orcid.org/0009-0005-1534-4732NICHT SPEZIFIZIERT
Xu, PeiliangNICHT SPEZIFIZIERTNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:13 Mai 2024
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:16
DOI:10.3390/rs16101722
Seitenbereich:Seiten 1-29
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:Remote Sensing
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:landslide detection; satellite remote sensing; machine learning; classification; Google Earth Engine; transfer learning, terrabyte
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - HPDA-Nutzung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Internationales Bodensegment
Hinterlegt von: Wendleder, Anna
Hinterlegt am:07 Nov 2024 14:00
Letzte Änderung:18 Nov 2024 12:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.