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Abstract: Landslides, resulting from disturbances in slope equilibrium, pose a significant threat
to landscapes, infrastructure, and human life. Triggered by factors such as intense precipitation,
seismic activities, or volcanic eruptions, these events can cause extensive damage and endanger
nearby communities. A comprehensive understanding of landslide characteristics, including spatio-
temporal patterns, dimensions, and morphology, is vital for effective landslide disaster management.
Existing remote sensing approaches mostly use either optical or synthetic aperture radar sensors.
Integrating information from both these types of sensors promises greater accuracy for identifying
and locating landslides. This study proposes a novel approach, the ML-LaDeCORsat (Machine
Learning-based coseismic Landslide Detection using Combined Optical and Radar Satellite Imagery),
that integrates freely available Sentinel-1, Palsar-2, and Sentinel-2 imagery data in Google Earth
Engine (GEE). The approach also integrates relevant spectral indices and suitable bands used in a
machine learning-based classification of coseismic landslides. The approach includes a robust and
reproducible training and validation strategy and allows one to choose between five classifiers (CART,
Random Forest, GTB, SVM, and Naive Bayes). Using landslides from four different earthquake
case studies, we demonstrate the superiority of our approach over existing solutions in coseismic
landslide identification and localization, providing a GTB-based detection accuracy of 87–92%. ML-
LaDeCORsat can be adapted to other landslide events (GEE script is provided). Transfer learning
experiments proved that our model can be applied to other coseismic landslide events without
the need for additional training data. Our novel approach therefore facilitates quick and reliable
identification of coseismic landslides, highlighting its potential to contribute towards more effective
disaster management.

Keywords: landslide detection; satellite remote sensing; machine learning; classification; Google
Earth Engine; transfer learning

1. Introduction—Context and Related Work

Landslides occur when a slope equilibrium is disturbed, causing downslope move-
ment of soil, rock, and organic materials under the effects of gravity. They may be triggered
by seismic activities, heavy rainfall, volcanic eruptions, or ground cover changes and
can cause widespread damage to landscapes, infrastructure, and human lives and liveli-
hoods [1,2]. It is therefore important to detect landslides accurately and quickly and this
study proposes a remote sensing (RS) approach to do this using earthquake-triggered
landslides as case studies.
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1.1. Earthquakes and Coseismic Landslides

Earthquakes are ranked among the most devastating natural disasters [3] and have
caused about 750,000 deaths globally in the last 20 years [4]. The magnitude, intensity, and
duration of an earthquake play crucial roles in determining the level of destruction and
harm they inflict. The damage is usually generated by earthquake-triggered disasters, in-
cluding ground shaking, ground rupture, liquefaction, landslides, tsunamis, and floods [5].
Additionally, the specific location and timing of these events also significantly influence
their impacts. For instance, the “Tohoku Earthquake” and subsequent earthquakes in
Fukushima in 2011 led to 18,426 casualties (confirmed dead and missing), about one million
destroyed buildings, and economic costs totaling USD 300 billion [6].

Landslide size or extent, and its impact, primarily depend on the type of landslide, the
underlying topography (slope, aspect, elevation, surface curvature, and roughness), and its
cause [7]. Both rainfall and seismic activity are primary causes of landslide occurrences [8].
Rainfall-induced landslides typically occur in regions prone to heavy precipitation, espe-
cially in areas with steep slopes and poorly consolidated soil or rock. They are triggered
primarily by water infiltration and saturation and occur typically during or shortly after
heavy rainfall events. Coseismic landslides often occur on landslide-prone slopes or along
fault lines where the ground is already weakened. They are directly triggered by seismic
shaking and occur immediately or shortly after an earthquake. When seismic and heavy
rainfall events co-occur, it is challenging to identify the primary cause [9,10]. In the event of
an earthquake, coseismic ground deformation, and distance to the surface rupture zone are
important influencing factors of landslide susceptibility [11]. In addition, landslide suscep-
tibility models often take into account landslide conditioning factors such as the amount of
rainfall that triggered the landslide event, indices derived from a Digital Elevation Model
(DEM) including the topographic wetness index (TWI) and the sediment transport index
(STI), as well as spectral vegetation indices such as the Normalized Difference Vegetation
Index (NDVI) indicating vegetation density and health [12,13].

1.2. Satellite Remote Sensing-Based Landslide Detection

Detecting landslides using satellite RS-based solutions provides crucial information
and evidence for landslide- and earthquake-related research. Landslide detection time, lo-
cation, and spatial extent of identified landslides, together with information about changes
in land surface materials, are not only important for landslide risk/susceptibility modeling,
and for disaster impact assessment [14], but also for early disaster response and monitor-
ing. Captured satellite imagery available as near real-time (NRT) products with latency
below three hours [15,16], together with effective cloud-based imagery processing and
distribution of detected landslide locations to emergency response systems, are key to early
response and can save lives and reduce damage.

Multiple relevant satellite imagery sensors for earthquake applications have been
identified [17]. RS-based landslide detection approaches utilize both, optical sensors
(e.g., Landsat-8 (L8), Sentinel-2 (S2)), and radar sensors (e.g., Sentinel-1 (S1), PALSAR-2
(P2)), as well as elevation and slope raster datasets, usually derived from SAR (synthetic
aperture radar) acquisitions by interferometric synthetic aperture radar (InSAR) [18]. Most
SAR-based landslide detection methods utilize InSAR to quantify ground surface defor-
mation through measured changes in radar phase between two (pre- and post-landslide
event) acquisitions [19,20]. Alternatively, SAR radar backscatter intensity and coherence
can also be used to detect changes in ground surface properties due to higher surface
roughness of the landslides in the post-event scene leading to higher surface backscattering
or due to surface changes (e.g., land cover, roughness, dielectric properties) during pre-
and post-event causing a loss of coherence.

While SAR can inform about local surface deformation and surface changes, optical
sensors provide useful spectral information. Processing and analysis of relevant satellite
imagery for investigating earth surface properties is generally performed by utilizing
spectral indices or image classification [21]. Both approaches focus on mapping changes or
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the absence of vegetation resulting from landslides. For change detection, a continuous time
series of imagery data, including pre- and post-landslide events, is required [22]. When
processing optical satellite imagery, cloud pixels can be avoided or reduced by mosaicking
of quality-filtered multi-temporal images [23].

Several reviews have discussed and compared satellite RS-based methods for landslide
detection [24–28]. In summary, most existing techniques apply a spectral index threshold
(e.g., NDVI, rdNDVI (Relative Different NDVI), BSI (Bare Soil Index)), supervised image
classification, or radar phase and backscatter change to an imagery obtained from a single
satellite sensor. Many methods incorporate slope data at the pixel level into their algo-
rithms, and several approaches involve masking out pixels that fall below a specified slope
threshold, thereby eliminating them from consideration as potential landslide pixels. In [29]
for instance, a slope threshold of 15 degrees was applied for masking.

Some methods also consider principal component analysis (PCA), which transforms
multiple spectral bands acquired at different times into distinct linear components, which
results in noise reduction and removal of redundant information in the data, ultimately
enhancing the distinction between spectral bands [30,31]. An overview of existing studies
is provided in Table 1.

The Sudden Landslide Identification Product (SLIP) [32] algorithm is widely used
for landslide detection. It is a multi-sensor approach that explores changes using four
thresholds: (1) increases in red wavelength band to signify the exposure of bare earth;
(2) variations in the shortwave infrared (SWIR) bands to indicate changes in soil moisture;
(3) steep slopes, determined from DEM, to restrict the detection process to areas with pro-
nounced topographic inclines; and (4) s land cover mask to minimize errors of commission
specifically within recognized agricultural regions. SLIP was developed for MODIS and L8
imagery, adapted by integrating the inverse NDVI to assess the soil bareness (aSLIP) [33],
and improved to utilize S2 instead of L8 imagery (iSLIP) [34]. In addition, Zhang, et al. [35]
discussed the potential presence of “old landslides”—areas of previously triggered land-
slides that did not (fully) recover at the time of the new incident. Such “old landslides”
could be falsely detected as new landslides but can be masked to avoid detecting them
as false positives (FP), if spatial data about the boundaries of such former landslides are
available. Previous studies detecting landslides based on S2, L8, or similar multispectral
optical sensors utilized in most cases Level-2A surface reflectance (SR) products, and in a
few cases Level-1C Top of Atmosphere (TOA) products [36,37].

Although SR products are generally preferred for land cover classification due to
the reduced variability of atmospheric conditions, TOA satellite imagery products can
facilitate quicker landslide detection because they are usually available earlier than derived
atmospherically corrected SR products. Furthermore, TOA products maintain radiometric
consistency across different scenes and can therefore simplify analysis across different
images and time periods. Preserving the original spectral information captured by the
satellite sensor, TOA products also offer greater flexibility compared to SR products [21].
For instance, different atmospheric corrections can be applied and compared, or TOA
products can be utilized without the influence of atmospheric effects, which is valuable
for long-term monitoring and trend analysis of land surfaces, including detecting subtle
changes indicative of potential landslides.

Validating the accuracy of landslide detection approaches is usually based on available
ground truthing, in the form of either point samples of confirmed landslide locations or
polygons representing their spatial boundaries. The latter is either captured in the field or
created via digitization from very high-resolution (VHR) aerial or satellite RGB imagery on
which the boundaries of landslides are clearly visible. Ground truthing-based accuracies
assessment utilizes confusion matrix-derived metrics that can be categorized into three
groups: (a) metrics on the positive class: recall, precision (Prec), F1 score (F1S), false
positive rate (FPR), commission error (CE); (b) metrics on the negative class: specificity
(Spec), negative predictive values (NPV), omission error (OE); and (c) metrics on both
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classes for imbalanced data: overall accuracy (OA), balanced error (BE), balanced accuracy
(BA), quality percentage (QP), and kappa coefficient [38–40].

The accuracies of published landslide detection methods (Table 1) are challenging to
compare because they strongly depend on detection and validation methods used, imagery
pixel resolution, reliability of ground truthing data, and the study area size. For a reliable
comparison, the methods would need to be implemented and applied to the same landslide
events while using a comprehensive and accurate ground truthing dataset for validation.
With regard to reported accuracies, existing landslide detection methods (Table 1) produced
good, but not excellent, detection rates with most accuracies being between 55% and
75%. Combining different optical and SAR imagery while applying advanced machine
learning-based models could further improve landslide detection accuracies [28].

Table 1. Comparison of published approaches using satellite imagery for landslide detection. Infor-
mation about the satellite sensor source, detection method, and study location is provided. “Change
detection” indicates whether images pre- and post- (“yes”) or only post- (“no”) landslide events
were utilized. “GEE” indicates whether a method was implemented using Google Earth Engine.
“Coseismic” indicates whether case studies used include coseismic landslides or not.

No. Publication Satellite
Sensors Detection Method Change

Detection GEE Study Area Co-
Seismic

M1 [41] L8, SRTM DEM ∆NDVI, Supervised
classification Yes Yes Nepal Yes

M2 [42] S2, SRTM DEM ∆NDVI or rdNDVI Yes Yes Sulawesi Yes

M3 [43] S2, L8 rdNDVI Yes Yes Papua New
Guinea, Kenya Yes 1

M4 [40] S2 ∆BSI Yes No Central America Yes

M5 [29] S2, DTM (5 m) ∆NDVI, slope Yes Yes Italy No 1

M6 [31] S2,
ALOS GDEM

Unsupervised classification
(NDVIpost, slope, S2post

bands)
No No India, China,

Taiwan Yes 1

M7 [38] S2,
ALOS GDEM

Supervised OBIA
(NDVIpost, slope) No No India, China,

Taiwan No 1

M8 [44] L8
Supervised classification

(NDWIpost, NDVIpost, DEM,
slope)

No Yes India No 1

M9 [45] S1 or S2 ∆NDVI, SAR backscatter
(VV-VH) Yes Yes Norway No 1

M10 [19,46] S1
∆SAR backscatter (VH),

heatmap for visual
landslide interpretation

Yes Yes
Haiti; Vietnam;

Japan: Hokkaido,
Hiroshima;

Yes 1

M11 [47] S1 ∆SAR backscatter (VV-VH) Yes No Mexico Yes

M12 [39,48] P2 ∆SAR backscatter (HH) Yes No Japan: Hokkaido Yes

M13 [32] L8 SLIP (%RedChange, ∆mNDMI) Yes No Nepal, Cameron Yes 1

M14 [33] L8 aSLIP (mRedChange, ∆iNDVIn,
∆mNDMI) Yes No Nepal, Cameron No 1

M15 [34] S2 iSLIP (mRedChange,
∆mNDMI) Yes No Japan: Hokkaido Yes

M16 [36] S1,
S2

∆SAR backscatter (VV) or
SLIP (%RedChange, ∆mNDMI) Yes No India No

M17 [49,50] GE RGB
imagery

ML: RetinaNet, YOLO v3,
Mask R-CNN, YOLOX No No China Yes

1 Case studies include landslides triggered by floods or other weather events.
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1.3. Cloud-Based Processing, Google Earth Engine and Machine Learning

Cloud-based satellite imagery processing offers numerous benefits. It enables seamless
data integration and interoperability by easily combining satellite imagery with other data
sources using standardized application programming interfaces. This allows for smooth
integration into existing workflows and software applications. It ensures accessibility and
scalability, as large volumes of satellite imagery can be processed and analyzed without the
need for additional hardware or infrastructure. This eliminates the cost and maintenance
associated with expensive equipment, making satellite image analysis more cost-effective
and efficient. Moreover, cloud-based processing provides advanced capabilities for satellite
imagery analysis, utilizing machine learning algorithms, computer vision techniques, and
Artificial Intelligence tools [51]. These enable researchers to extract valuable insights and
patterns from imagery data, uncovering hidden relationships and trends for more accurate
and sophisticated analysis.

Furthermore, cloud-based processing enables (near) real-time analysis, crucial for
time-sensitive scientific investigations and monitoring applications. It allows researchers
to leverage satellite imagery as soon as it becomes available, enhancing the timeliness of
their research. Additionally, cloud-based platforms facilitate easy project collaboration,
providing a centralized and accessible environment for researchers to collaborate, share
data, and work collectively on projects. This promotes interdisciplinary research and
knowledge exchange, and accelerates scientific progress. Lastly, cloud-based processing
ensures data backup, guarantees data integrity, and reduces the risk of data loss [52].

One prominent and freely available example of a cloud-based processing environment
is Google Earth Engine (GEE), which allows users to visualize and process multi-petabyte
archives of satellite imagery and geospatial datasets with planetary-scale analysis capa-
bilities. GEE offers support tools to analyze and monitor environmental properties on
a large scale [53]. A rise in published journal articles related to GEE over the last three
years highlights the increased popularity of GEE, with L8 and S2 being the most widely
used earth observation satellite sensors, and articles based on Random Forest and water
resources most often reported [54]. Several existing landslide detection methods have been
implemented in GEE [19,29,39,42–46,55]. However, only Handwerger et al. [19] provide a
shared GEE script that allows replication and potential adjustment of the script to other
landslide events. GEE offers not only the opportunity to implement and compare existing
landslide detection methods but also to apply and compare different ML classifiers for
advanced landslide detection, an aspect that to our knowledge has not yet been addressed
in the literature. In addition to detection, a few other landslide-related studies implemented
in GEE are worth noting, focusing on landslide deformation tracking [56], recovery [37],
or susceptibility [57–60]. Khan, et al. [61] provide a comprehensive comparison of all ML
classifiers available in GEE (except Gradient Tree Boost (GTB)). The only published research
using ML algorithms in GEE for landslide detection that we are aware of is based on RGB
satellite imagery extracted from Google Earth Pro [49,50].

1.4. Research Gaps, Aim and Contributions of This Work

In summary, the following research gaps for RS-based landslide detection have
been identified:

• Existing methods built upon change detection of either spectral index or SAR backscat-
ter, but the benefits of combining optical and SAR sensor bands have not yet
been explored;

• No study has applied and compared the performance of different ML classifiers
available in GEE for landslide detection;

• Existing studies using optical sensors (e.g., L8 or S2) have used SR products, but
none have investigated the use of TOA vs. SR products regarding resulting landslide
detection performance;

• No comparison of existing landslide detection methods has been applied to the same
study dataset;
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• No study has investigated the benefits of transfer learning for landslide detection;
• No ready-to-use ML-based solution to landslide detection is available in GEE.

The main aim of our work is to utilize ML algorithms and image fusion within GEE to
improve RS-based landslide detection. Specifically, the following research questions will be
addressed in this paper:

• To what extent could ML-based landslide detection using stacked bands from multiple
optical and radar sensors improve landslide detection compared to
existing approaches?

• How do ML classifiers, available in GEE and applied to landslide detection, compare
in terms of performance and processing speed?

• What are the possibilities in GEE for early landslide detection—how does the use of
TOA radiance products compare to SR products?

• How important are relevant spectral and derived topographic bands for
landslide detection?

• What other factors impact satellite imagery-based landslide detection accuracy?
• To what extent can an ML-based landslide detection in GEE be fully automized to

allow easy operational adjustment to any spatio-temporal scenario?

With the purpose of addressing these research questions and research gaps, our work
will provide the following contributions:

• Detailed comparison of the performance (accuracy assessment) of existing RS-based
landslide detection methods using ground truthing datasets from four different
case sites;

• Novel RS-based landslide detection solution that:

# Utilizes stacked multi-band optical and SAR imagery at 10 m spatial resolution
including S1, S2, P2, and elevation-derived topographic bands;

# Applies landslide-specific training and validation sampling strategy based on
a novel slope masking approach;

# Applies ML classifier with optimized parameters to boost performance and
processing speed;

# Utilizes new additional pseudobands as part of the ML classifier: slope curva-
ture, aspect, P2 SAR bands, S1 SAR band: combined VH-VV;

# Is implemented in GEE with an accessible source code, including landslide
inventory data for all four study sites and a guideline to adjust the GEE code to
any study area;

• Investigation of the importance of each landslide conditioning band within the
ML model;

• Thorough investigation and comparison of ML classifiers in GEE for coseismic land-
slide detection;

• Comprehensive across-geography applied transfer learning-based landslide detection
and validation;

• Transfer learning space transferability.

Hence, our novel approach provides a significant contribution to RS-based landslide
detection, which we illustrate using four different case studies on coseismic landslides
caused by 6.6–7.5 magnitude earthquakes that occurred across the globe between 2016
and 2021. The remaining content of this manuscript is structured as follows: Section 2
introduces the study area, provides details on the satellite imagery datasets used, and
explains in detail the workflow of our proposed approach that includes multi-sensor
imagery fusion, ML-based landslide detection, experimental settings, and used evaluation
metrics. Section 3 will present the results and Section 4 will discuss the results and provide
insights into the detection accuracies of existing solutions compared to our solution; discuss
the performance of different ML classifiers; explain the importance of each sensor band;
compare TOA vs. SR as part of the detection solution; discuss space transferability; present
the conclusion and explore future possibilities.
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2. Materials and Methods
2.1. Case Studies

Below, four coseismic earthquake case studies used in this paper are described. Table 2
provides an overview of each event, including details of the sourced landslide inventory
data. Figure 1 maps these inventory data and the used study area boundaries.
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Figure 1. Distribution of landslides recorded in the landslide inventories used as case studies in
(a) Japan, (b) Haiti, (c) Papua New Guinea, and (d) New Zealand, and study areas implemented
in this study. The distribution of coseismic (old and new) landslides based on available landslide
inventory data is indicated.
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Table 2. Coseismic landslide inventories used as case studies in this paper. Information about
the landslide location, human fatalities and injured, and the inventory approach (methodological
approach, number of landslides inventoried, and spatial extent) are provided.

Earthquake
Date

Epicenter
Location

Epicenter
Lat/Lon

Focal
Depth
(km)

Mw,
Death,

Injured

Inventory
Method Ref.

No.
Inventory

Landslides

Used
Landslides

Study Area
(km2)

6 September
2018

Japan,
Hokkaido,

Iburi

42.662◦N
142.011◦E 37

6.6,
41,
691

VHR UAV
imagery,

PlanetScope
[62] 5625 5208 (93%) 359

14 August
2021

Haiti, Tiburon
Peninsula, Pic

Macaya NP

18.434◦N
73.482◦W 10

7.2,
2200,

12,200

GE imagery,
PlanetScope [63] 6100 80% 170

25 February
2018

PNG, Hela
Province,

Komo

6.070◦S
142.754◦E 15–30

7.5,
160,
500

GE imagery,
PlanetScope,
Rapid Eye

[64] 11,607 8912 (77%) 5163

14 November
2016

New Zealand,
South Island,

Kaikōura

42.737◦S
173.054◦E 15

6.7,
2,

618

GE imagery,
S2 [65] 14,233 2521 (18%) 1370

2.1.1. Japan, 2018 Mw 6.6 Hokkaido Earthquake

On 6 September 2018, a moment magnitude 6.6 earthquake struck the Iburi Subprefec-
ture in Southern Hokkaido, Japan, following Typhoon Jebi’s passage. The 2018 Hokkaido
Eastern Iburi earthquake is hereafter referred to as “JPN case study”. Aftershocks indicated
compression along the ENE-SWS direction in the Northern, Southern, and Shallow Iburi
faults [66]. The earthquake caused extensive damage, triggering thousands of landslides.
A comprehensive inventory map identified nearly 6000 coseismic landslides, mostly small
to medium translational ones with high mobility and long run-out distances ranging from
25 m2 to up to 57,000 m2. This dataset, representing ground truth polygons of all landslides
triggered during the 2018 Hokkaido earthquake, is hereafter referred to as “landslide inven-
tory”. The spatial extent of the study area was defined by applying a convex hull around
the landslide inventory polygons, resulting in an extension of 22 km (east–west) by 24 km
(north–south) geodetic distance, while the convex hull-shaped study area spans a geodetic
area of 359 km2. Note that for computational reasons, a few distant/isolated landslide
inventory polygons were excluded to reduce the total study area. Despite the area’s low
population density (less than 10 persons per km2), the landslides resulted in 41 fatalities
and 691 people injured. The landslide concentration formed an elliptical area parallel to
the region’s (active) faults, with the most affected aspect being southerly, perpendicular
to the NNW/SSE striking faults. These coseismic landslides occurred in regions with a
seismic intensity ranging from 7.0 to 8.0 on the Modified Mercalli intensity scale and peak
ground acceleration between 0.4 and 0.7 g. They were densely distributed in hilly regions
at elevations between 100 and 250 m, with slope angles ranging from 15◦ to 35◦. Most of
the landslides were shallow, several meters deep, and categorized as planar and spoon
types [67]. The area predominantly consists of Neogene sedimentary rocks overlaid by
pumice layers from Tarumai volcano to the east. Surface soil layers in the low to middle
mountain ranges contain interbedded pumice and ash, with a thickness of approximately
4–5 m [39]. The landslide-prone area primarily consists of Miocene sedimentary rock.
Slope failures occurred in stratified pyroclastic fall deposits due to a combination of strong
seismic ground motion and intense antecedent precipitation [35].

2.1.2. Haiti, 2021 Tiburon Peninsula Mw 7.2 Earthquake

On 14 August 2021, a seismic event of moment magnitude 7.2 struck the region of
Nippes, Haiti, specifically on the Tiburon Peninsula, marking a significant geological event.
This seismic disturbance was attributed to activity along the Enriquillo–Plantain Garden
Fault, a seismogenic fault renowned for its tectonic significance in the area. The aftermath of
this earthquake revealed a notable impact on the landscape, triggering over 8444 landslides



Remote Sens. 2024, 16, 1722 9 of 29

across an expanse of approximately 2700 km2. Among these, an area totaling 45.6 km2

experienced direct landslide activity, with particular concentration observed in the western
region of the Tiburon Peninsula. Notably, the Pic Macaya National Park emerged as a focal
point, with approximately 6100 landslides occurring within or near its confines, constituting
72.2% of the total landslide occurrences, hereafter referred to as “HTI case study”. Further
analysis revealed that 89.4% of the landslides were predominantly situated in the hanging
wall area and regions characterized by high relief, featuring slopes ranging between 35◦

and 55◦ [63]. The consequences of these landslides were multifaceted, directly resulting in
fatalities and extensive damage to infrastructure. Moreover, the obstruction of roads and
other vital pathways hindered response efforts, exacerbating the challenges faced in the
wake of this seismic event [68].

The spatial extent of the study area was defined by applying an envelope around
the landslide inventory polygons, resulting in an extend of 16 km (east–west) by 11 km
(north–south) geodetic distance, while the convex hull-shaped study area spans a geodetic
area of 170 km2. Note that for computational reasons, a few distant/isolated landslide
inventory polygons were excluded to reduce the total study area.

2.1.3. Papua New Guinea, 2018 Mw 7.5 Earthquake

In the highlands of Central Papua New Guinea (PNG), close to Komo in the Hela
Province, a seismic event of moment magnitude 7.5 took place on 25 February 2018. This
event, hereafter referred to as “PNG case study”, stands as the most remarkable earthquake
documented within this geographical expanse over the preceding century. Subsequently,
the affected area experienced four substantial aftershocks (each with a moment magnitude
equal to or exceeding 6.0) within a span of 9 days following the mainshock. The affected
area is highly susceptible to landslides due to its climatic, geologic, and tectonic influences.
Furthermore, local environmental conditions serve to amplify the seismic shaking, exacer-
bating the propensity for landslides. The aftermath of the seismic event was characterized
by a huge amount of landslides throughout the region [69].

The initial earthquake and its ensuing aftershocks triggered widespread landslides,
with an estimated total exceeding 11,600, of which >10,000 were triggered by the principal
earthquake. These landslides collectively generated a cumulative planimetric failure area
encompassing approximately 145 km2. Steep hillslopes caused the activation of large land-
slides reaching dimensions of up to approximately 5 km2 for single landslides. Analysis
of the seismic event delineated a predominant reverse fault motion, with discernible dis-
placement reaching up to approximately 0.7 m along faults extending to depths surpassing
25 km [64].

The spatial extent of the study area was defined by applying an envelope around
the landslide inventory polygons, resulting in an extend of 148 km (east–west) by 84 km
(north–south) geodetic distance, while the convex hull-shaped study area spans a geodetic
area of 5163 km2. Note that for computational reasons a few distant/isolated landslide
inventory polygons were excluded to reduce the total study area.

2.1.4. New Zealand, 2016 Mw 6.7 Kaikōura Earthquake

On 14 November 2016, the Northeastern South Island of New Zealand experienced
a seismic event of Mw 7.8 known as the Kaikōura earthquake. This earthquake, here-
after referred to as “NZL case study”, exhibited a remarkably intricate rupturing mech-
anism, unprecedented in complexity within recorded seismic activity. The seismic in-
strumentation in place within the region provided comprehensive data on the event. A
total of 14,233 landslides were documented, covering an extensive area of approximately
14,000 km2. The earthquake’s rupture sequence impacted a series of active faults, extending
offshore and significantly affecting coastal and inland areas across the northeastern part of
the South Island.

Analysis of global moment tensor solutions revealed the intricate nature of this multi-
fault rupture earthquake. The rupture process was observed to propagate from south to
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north, establishing connections between the Hikurangi subduction system of the North
Island and the oblique collisional regime of the South Island, notably the Alpine Fault.
The impacts of the Kaikōura earthquake on both infrastructure and the environment were
severe and widespread. Reconstruction efforts were estimated to cost between NZD 3 and
8 billion, underscoring the scale of the challenges posed by the event’s aftermath [65].

The spatial extent of the study area was defined by applying an envelope around
the landslide inventory polygons, resulting in an extend of 48 km (east–west) by 69 km
(north–south) geodetic distance, while the convex hull-shaped study area spans a geodetic
area of 1370 km2. Note that for computational reasons a few distant/isolated landslide
inventory polygons were excluded to reduce the total study area.

2.2. Methodology

As illustrated in Figure 2, Our ML-LaDeCORsat approach involved two principal
steps: (a) preprocessing and (b) training and evaluation of an ML algorithm used to classify
a combined S2 optical S1 SAR imagery dataset into landslide and non-landslide pixels.
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2.2.1. Data Preparation

Considering previous approaches (see Table 1), several satellite sensors and imagery
bands that are available in GEE are relevant for landslide detection as proposed in this
work (Table 3).

Table 3. Location and content information about satellite imagery bands available in GEE that
are relevant to landslide detection. Ground sample distance (GSD) is the distance between
two consecutive pixel centers measured on the ground.

Sensor Bands GSD (m) Description and Source (URL)

S2-L1C B2-B12 10 or 20
Sentinel-2 L1C (TOA) multispectral bands

https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
(accessed on 9 October 2023)

S1 VV, VH 10
Sentinel-1 C-band Interferometric Wide swath, Ground Range Detected, log scaling;

https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
(accessed on 9 October 2023)

P2 HH, HV 25
PALSAR-2 L-band ScanSAR Level 2.2 backscatter data, log scaling

https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-
2_Level2_2_ScanSAR (accessed on 9 October 2023)

ASTER Elevation
(b1) 30 ASTER Global Digital Elevation Model (GDEM) Version 3

https://gee-community-catalog.org/projects/aster/ (accessed on 9 October 2023)

To prepare multispectral S2 data for landslide detection for each case study, two cloud-
free sets of imagery covering the entire area of interest (AOI) were necessary, representing
the situations before and after the landslide events.

As shown in Figure 1, the inventories of landslides used in this work did not include
the entire available inventory source dataset. For GEE performance reasons, a convex hull
was applied covering the majority of all inventory data while excluding a small amount of
rather isolated inventory landslides. In addition, for the NZL case study, available Sentinel-1
post-event imagery only covered the southeast part of the available inventory data.

Except for the NZL case study, a single S2 imagery scene available in GEE did cover
the respective AOI. In the case of NZL, three adjacent cloud-free S2 imagery had to be
joined using the GEE ImageCollection.mosaic() function.

Due to the likeliness of cloud coverage, it is suggested to compute multi-temporal
image composites (“mosaics”) [45]. In this work, S2 multi-temporal image mosaics were
created for the pre- and post-earthquake scenario over the PNG case study due to significant
cloud coverage in all S2 imagery in 2017 and 2018. In total 88 selected S2 imagery during
2017 were used to create a cloud-free S2 pre-earthquake mosaic and 67 selected S2 imagery
between March and July 2018 to create a cloud-free S2 post-earthquake mosaic. Due to
PNG’s geographic location being close to the equator causing its hot, humid climate with
all months above 18 ◦C, seasonal reflectance dynamics have only a marginal impact on
these mosaics if at all. For the other three case studies, nearly or completely cloud-free
S2 imagery was available within a few months after each earthquake event. A cloud-free
pre-earthquake S2 imagery was then extracted approximately one year earlier to avoid
seasonal reflectance dynamics.

Since an S2-L1C (TOA) image product can be available (on GEE) up to a few hours
earlier than S2-L2A (SR), it was decided to use the S2-L1C product, and to apply, depen-
dent on its impact on landslide detection accuracies, the Sensor Invariant Atmospheric
Correction (SIAC) method [70] to convert TOA radiance into estimated SR values in GEE.
Masking was applied to the few cloudy pixels in the pre-earthquake S2 image using the S2
QA60 (cloud mask) band. In addition, S2-L1C (TOA) data have been available in GEE since
July 2015, and S2-L2A (SR) data only since April 2017, which allowed us to utilize the NZL
case study, which occurred in 2016.

https://developers.google.com/earth-engine/datasets/catalog/sentinel-2
https://developers.google.com/earth-engine/datasets/catalog/COPERNICUS_S1_GRD
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR
https://developers.google.com/earth-engine/datasets/catalog/JAXA_ALOS_PALSAR-2_Level2_2_ScanSAR
https://gee-community-catalog.org/projects/aster/


Remote Sens. 2024, 16, 1722 12 of 29

Sentinel-1 imagery data accessible via GEE consists of radiometric calibrated, ortho-
rectified SAR C-band backscatter images available in four polarization modes: (1) single
co-polarization: vertical transmitting, vertical receiving (VV), (2) single co-polarization: hor-
izontal transmitting, horizontal receiving (HH), (3) dual-band cross-polarization: vertical
transmitting, vertical and horizontal receiving (VV and VH), and (4) dual-band cross-
polarization: horizontal transmitting, horizontal and vertical receiving (HH and HV). As
argued by [19], HH and HV polarizations are less useful for landslide detection, thus
only VV and VH polarization were considered due to their sensitivity to forest biomass
structure [71].

Due to the longer wavelength, the emitted L-band radar of ALOS-2/P2 can better
penetrate through denser vegetation compared to S1’s C-band. The GEE-provided ortho-
rectified and radiometrically calibrated and terrain-corrected normalized backscatter data
of P2 used in this work, were available as HH and HV polarization bands. The available
S1 SAR imagery data included in this study comprised the period of approximately four
months before and after the earthquake in order to identify sufficient ascending and
descending pre-earthquake, respectively, post-earthquake imagery. Following the approach
of [19], the temporal median of the pre-event and post-event SAR data were computed,
and ascending and descending data were combined by calculating their mean values.

Due to the differences between S1 and P2 in terms of sensor characteristics, polarimetry,
orbit parameters, imaging strategies, and data availabilities in GEE, a much larger time
window for P2 had to be selected. Even including all available P2 imagery since 2014 and
until the present, sufficient ascending and descending pre- and post-event P2 imagery were
only available for the JPN case study. Further details about temporal filtering of the utilized
S2, S1, and P2 imagery for all four study sites are provided in Supplementary Table S14.

In addition to using elevation data sourced from ASTER GDEM to extract landslide
conditioning factors, slope values derived from the GDEM were used to mask out irrelevant
pixels below a certain slope threshold (e.g., 10 degrees). Another potentially relevant
conditioning factor is pixel-based solar radiation. However, the only globally available
raster dataset in GEE is the Global Solar Atlas, generated using Shuttle Radar Topography
Mission (SRTM) derived elevation data combined with MTSAT and Himawari-8 reflectance
data as reported in [72]. Due to its coarse spatial resolution of 250 m, the solar atlas was not
incorporated into this work.

2.2.2. Landslide Conditioning Factors

As shown in Figure 2, several bands and derived bands (“pseudobands”) were iden-
tified from literature as relevant landslide conditioning factors—and used in the ML-
LaDeCORsat approach. For S2, these include the following bands: (a) all spectral bands
of the prepared S2 post-earthquake image except B1 (aerosol), B9 (water vapor), and B10
(cirrus), (b) the differences of each spectral band by subtracting pre-earthquake reflectance
values from post-earthquake ones, and c) the below-listed computed spectral indices (pre-
fixes in front of spectral index abbreviation: “∆” refers to change (post minus pre), “i” refers
to inverse, “m” refers to modified, “n” refers to normalized, and “rd” refers to relative
difference):

• Soil index: BSIpost, ∆BSI [40];
• Vegetation index: NDVIpost, ∆NDVI, rdNDVI, ∆iNDVIn [31,38,40–45];
• Water index: NDWIpost, ∆NDWI [44];
• Drought index: ∆mNMDI [32,34];
• Sudden Landslide Identification Product/index: SLIP [32], aSLIP [33], iSLIP [34].

Specific index formulas and thresholds can be found in the cited references. All these
indices had been used in previous landslide detection methods, except BSIpost, which was
added to explore its importance for detection performance.

Utilizing S1 polarization bands, the same methodology as suggested in [19] was
followed to determine the log ratio (and percentiles of it) for pre- and post-event S1 SAR
intensity using different polarizations. It was then decided to include the following three
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bands, which were identified via empirical investigation as the best-performing bands for
landslide detection:

• S1_log_VH: log ratio for pre- and post-event S1 SAR (VH) intensity;
• S1_90p_VH: 90th percentile of S1 log ratio (VH);
• S1_90p_VH_VV: 90th percentile of S1 log ratio (VH and VV).

Utilizing P2 polarization bands, the same process as for S1 was applied and the
following band was identified to be included in the ML classifier used in this study:
P2_log_HV, the log ratio for pre- and post-event P2 SAR (HV) backscatter.

Derived from GDEM, the following topographic factors were included: slope, aspect,
curvature, and elevation [29,31,38]. These topographic data were derived from imagery
taken prior to the earthquake event. Post-earthquake elevation data were not available
in this work, but data including detailed changes in elevation might further improve
detection results.

Further relevant topographic indices are TWI and STI, computed using slope and
flow accumulation as inputs. While slope can be easily created in GEE from a given DEM,
GEE does not provide a function to compute flow accumulation out of the box due to
a significant amount of required iterative operations. TWI and STI could be, however,
computed from a DEM using GIS software and uploaded into GEE. In GEE, available
rainfall datasets do not provide the required spatial resolution to be considered for this work.
The Global Precipitation Measurement (GPM) dataset [73], for instance, supplies global
precipitation estimates updated every 30 min, but only at a spatial resolution of 0.1 degrees
(approximately 11 km). As the focus of this work was to produce a replicable and ready-to-
use GEE landslide detection product, the use of TWI and STI was not further investigated.

In summary, these identified indices, allowed the proposed ML-LaDeCORsat detection
method to address changes in surface vegetation, vegetation moisture, bare soil, soil
moisture, and bare-earth exposures derived from S2 imagery; to consider alterations in
ground surface properties (e.g., roughness, dielectric properties) through S1 and P2 SAR
intensity and coherence changes; and to incorporate topography features of the study area
(e.g., slope, aspect) using the GDEM.

In preparation for the image classification, pre-processed SAR and topographic bands
were spatially reprojected and resampled to match pixel dimension (10 m) and position
of S2 pixels. Next, all 40 landslide conditioning bands were combined into a single image
using the addBands GEE function. This multi-band stacked image was then fed into the ML
feature matrix.

Investigations into PCA bands derived from S2 post and S2 change bands did not lead
to improved landslide detection accuracies, for none of the four case studies, hence PCA
bands were not included in this work.

2.2.3. ML Sampling Strategy

A sampling strategy specifically designed for ML-based classification of landslides
was developed. This strategy consists of several geoprocessing steps, illustrated in the
preprocessing part of the provided flowchart in Figure 2. First, three sampling areas
were defined. Utilizing the above-mentioned landslide inventories to define a “Positive”
sampling area (Parea), the GIS Erase tool was applied to generate an initial non-landslide
“Negative” sampling area (Narea). To allow a stratified random sampling method to create
sufficient sampling points near inventoried landslide polygons, a 100 m ring buffer was
created around the Parea, forming a second “Negative” sampling area: the N-Barea. This
ring buffer area was also erased from the initial Narea. Sampling points inside N-Barea allow
the model to put emphasis on “border” areas around landslides.

Next, the spatial extent of sampling areas and the multi-band stacked input image were
reduced by removing pixels within areas of low slopes, less than 10 degrees. Such slope
filtering has been applied in many of the existing RS-based landslide detection approaches,
including [29,32–34]. This, however, can cause false positives (FP) for scenarios in which
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the landslide is triggered at steeper slopes, but its flow area reaches into areas of lower
slopes, as illustrated in Figure 3.
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Figure 3. Schematic of a landslide event that illustrates source and flow areas. Adapted from [1],
figure 17.

To address this issue, a 100 m buffer was added to the slope filtering (using >10 degrees)
before clipping the ML input image with the final sampling areas. The buffer size of 100 m
was determined empirically. Not applying such a buffer has a strong impact on causing
FP as can be seen in Figure 4. Pixels with slopes >20 degrees are mapped in grey on top
of red-color-coded landslide inventory areas. The slope threshold of >10 degrees applied
to the JPN case study only overlaps 24% of the landslide inventory polygons (Parea). Only
when adding the 100 m buffer, more than 99% of the inventory data were covered, as
shown in Figure 4b. Table 4 lists landslide inventory areas not covered by a >10 degree
slope threshold for all four case studies.
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Figure 4. Effect of adding a buffer to slope filtering for the Japan case study. When mapping slope
filtering (grey) on top of the landslide inventory (red) with (a): slope threshold >10 degrees and
(b) slope threshold >10 degrees plus 100 m buffer, 24% and 99% of inventoried landslides are covered,
respectively.
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Table 4. Variation among the four case study sites in the maximum and mean slopes, and the landslide
areas covered when implementing 10 degree (10◦) slope thresholds.

Site Slope Max. Slope Mean Inventory and Slopes Area [km2] %

JPN 61 19 Inventory area covered by 10◦slope 18,240 76%
Not covered 5753 24%

Total 23,993 100%
HTI 75 29 Inventory area covered by 10◦ slope 10,557 95%

Not covered 567 5%
Total 11,123 100%

PNG 85 22 Inventory area covered by 10◦ slope 161,196 87%
Not covered 23,865 13%

Total 185,061 100%
NZL 73 24 Inventory area covered by 10◦ slope 13,145 88%

Not covered 1787 12%
Total 14,932 100%

2.2.4. ML Classifier

For ML model training and evaluation, a randomly stratified point sampling approach
was implemented using in total 6000 sampling points that consists of 3000 “landslide”
points inside Parea, 2000 “non-landslide” points inside Narea, and another 1000 “non-
landslide” points inside N-Barea. Each of these three parts was then split into 80% training
points and 20% validation points as exemplarily shown in Figure 5.
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Figure 5. Example of the training and validation approach implemented for the machine learning
model. (a): Sampling areas with 10 degrees slope and 100 m buffer filter applied were identified as
“landslide” inside (Parea), “non-landslide” inside (Narea), and another “non-landslide” inside N-Barea.
(b): randomly placed training and validation points within each sampling area were assigned at a
ratio of 4:1.

Next, all available ML classifiers in GEE were implemented, including Classification
and Regression Trees (CART), Naive Bayes (NB), Random Forest (RF), Support Vector
Machine (SVM), and Gradient Tree Boost (GTB). For a consistent comparison, a fixed
randomization seed with a value of “0” was applied to ensure using the exact same set of
randomly distributed sampling points for ML model training and validation. Aiming to
compare the performance of all ML classifiers for landslide detection, the optimal settings
for the classifiers’ parameters were empirically investigated and finally defined as listed
in Table 5. Details about GEE classifier and their parameters are described in [74,75]. To
further improve detection accuracy, a Gaussian kernel filter (radius: 60 m, sigma: 30) was
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applied as suggested in [76] to the classified image to remove wrongly detected isolated
single landslide pixels. Older landslides triggered by previous events were excluded from
training and prediction. If not considered, the prediction will likely suffer from a high
number of FP.

Table 5. Optimal GEE ML classifier parameters for ML-LaDeCORsat.

Classifier Training
Samples

No. of
Trees

Min
LeafPop 1

Bag
Fraction Split Max

Nodes Shrinkage Sampling
Rate

CART 4800 N/A 7 N/A N/A 40 N/A N/A

RF 4800 500 7 0.5 10 20 N/A N/A

GTB 4800 650 N/A N/A N/A 20 0.00095 0.173

NB 4800 N/A N/A N/A N/A N/A N/A N/A

Classifier No. of
Samples Type Kernel

Type
Decision

Procedure Shrinking Degree Gamma Coef0

SVM 4800 C_SVC Poly Margin TRUE 1 0.5 10
1 Leaf node’s minimum sample value.

2.2.5. Evaluation Metrics

A range of different evaluation metrics were implemented to allow comparison of
landslide detection accuracy achieved in this work with existing methods (listed in Table 1).
Evaluation metrics used in this study included Kappa, OA, BA, BE, Spec, Recall, Prec, F1S,
NPV, OE, CE, FPR, and FNR. Furthermore, pixel counts of TP, FP, FN, and TN were com-
puted and added to the results to allow others to determine any further evaluation metrics,
such as omission or commission error. For comparing different classification settings within
this work (classifier parameters, sampling input, selected bands, and pseudobands), it was
decided to use the BA as one of the main comparative validation metrics due to its advan-
tages for measuring the prediction quality of all target classes as described by [77], along
with OA, Recall, Prec, F1S, and Kappa. Moreover, training accuracy (TA) and validation
accuracy (VA) were computed to investigate and address potential model overfit (in case of
larger differences between TA and VA). Training and validation accuracy of the models are
averaged over the five-fold. A detailed description of each metric can be found in [77]. For
each case study, the evaluation metrics were computed using approximately 2000 randomly
distributed validation points, containing at least 600 points inside landslide inventory
polygons. Computing the same evaluation metrics was then repeated considering all pixels
of the entire study area. Although a heavier computational task in GEE, the “all-pixel”
evaluation approach provides the best possible evaluation.

2.2.6. Band Importance Investigations

When using a set of potentially relevant features or variables (in this case spectral
bands or derived indices) for an ML algorithm, it is crucial to investigate the importance of
each band to achieve a better insight into what feature contributes towards performance
improvement and to decide which features to exclude in order to reduce the classification
computation time and memory. In the context of GEE, the classifiers available for impor-
tance ranking are limited to decision tree-based models, including CART, GTB, and RF.
Decision tree-based models offer robustness against correlations among variables due to
the nature of their algorithm. In each step of the decision tree algorithm, only one variable
is selected to split the training data, ensuring that correlated predictors are not utilized
simultaneously. To investigate the importance of each band, we utilized the GEE inbuilt
function: classifier.explain() which returns a dictionary that describes the results of a trained
classifier and includes band importance factors.
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2.2.7. Transfer Learning Investigations

Transfer learning or domain adaptation has been widely used in image classification
and other fields [78,79]. It is crucial to note that models predicting landslides may be
applied in geographical areas distinct from those where the model’s training data were
gathered. To verify the performance of ML-LaDeCORsat applied to landslide events, we
designed and conducted across-domain transfer learning for each case study with training
the ML-LaDeCORsat model using different subsets of target site samples together with the
complete sampling point dataset from other case studies. The model was trained on data
from one up to three sites and with or without a portion of training data from site four and
is applied to the test data of site four for evaluation. Comparing and validation of across
domain trained ML-LaDeCORsat outputs followed the same approach as described earlier.

3. Results
3.1. Landslide Detection Accuracies

Figure 6 presents ML-LaDeCORsat performance results for validation sampling points
at each case study site using CART, RF, GTB, or SVM classifier. In each case, S2-L1C (TOA)
bands have been used as they resulted in slightly better detection accuracies compared to
using SIAC-derived S2-L2A (SR) bands. Nevertheless, the shared ML-LaDeCORsat GEE
scripts do include both options. The classification performance measures include TA, VA,
Kappa, Spec, and Recall. BA and F1S outputs were almost identical to OA, so was Prec to
Spec. Supplementary Tables S1 and S2 list the specific performance measures for these and
all other validation metrics, as described in Section 2.2.5, for validation samples and for
“all pixels” applying each of all available classifiers including NB.
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Results clearly revealed that the GTB classifier achieved the best landslide detection
accuracy with OA of 92% of all validation pixels correctly classified for JPN, 89% for HTI
and PNG, and 86% for NZL. CART, RF, and SVM classifiers performed less accurately
resulting in an OA of 80–88%. Using NB did result in the least accurate prediction of only
49–57%. Comparing different classifiers based on the amount of overfitting (differences
between training and validation accuracy), all classifiers indicate very small differences of
less than 4%, indicating that the model is not overfitted.

To compare the best detection accuracy achieved using ML-LaDeCORsat with GTB,
landslides of all four case studies were predicted in GEE using one or more bands that
represent existing methods or additional landslide condition bands as previously presented
in Table 1. The resulting “all pixel”-based BA and Kappa validation values are listed in
Figure 7. In each case, ML-LaDeCORsat outperformed all existing methods. The work
of [44] utilizing a supervised classification applied to four conditioning factors (NDWIpost,
NDVIpost, DEM, and slope) was identified as the best-performing existing method, but it
achieved, taking the JPN case study as an example, 5% lower BA and 10% lower Kappa than
ML-LaDeCORsat. Detailed accuracy assessment can be found in Supplementary Table S3
until Table S6. Running ML-LaDeCORsat with the best-performing classifier, GTB, a binary
classified landslide map was created as well as an error map (Figure 8) providing visual
insights into the distribution and spatial density of TN and FN within the study area.
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Haiti, Papua New Guinea, and New Zealand.
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3.2. Importance Factors of Landslide Conditioning Bands

For investigating the importance of each landslide conditioning band for ML-LaDeCORsat
accuracy, we used band importance values provided as an output of the GEE classi-
fier.explain() function, which is available for CART, RF, and GTB. Figure 9 displays normal-
ized GEE band importance values for each of these three classifiers. High values indicate
high-importance factors. For all three classifiers, the following bands showed the highest
importance factors: NDVIpost, BSIpost, dem, S1_log_VH, ∆B4, ∆B5, ∆NDWI. Surprisingly,
S2 NIR and SWIR bands were less important. Further experiments investigating the detec-
tion performance with or without S1 bands confirmed for each case study that including
S1-derived bands always improved landslide detection accuracy. It should be noted that
the P2_log_HV band is not included in Figure 9 since it was only used for the JPN case
study. It had average importance for GTB (normalized importance of 0.2) and for CART
(0.12), and no importance for the RF classifier (0.05).
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Figure 9. Importance of various landslide conditioning bands for ML-LaDeCORsat accuracy based
on normalized sorted band importance for each study site using either (a) GTB, (b) CART, and (c) RF.
Classifiers are sorted by their sum over all case studies and high values indicate high-importance factors.

Using the JPN case study, Table 6 lists OA and BA as well as Earth Engine Compute
Unit (EECU) in minutes, representing the amount of instantaneous processing power, peak
memory (MB), and the count of operations for running the entire GEE script including
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image compilation, filtering, calculation of pseudobands, image band stacking, training
the ML classifier, etc. OA, BA, and the three computational measures are provided for
running the script with all 40 bands for all classifiers and with using only the best 20, 15,
10, or 5 bands for the three best-performing classifiers, GTB, RF, and CART. Results clearly
indicate the benefit of using a selected number of identified important bands in an ML
classifier for the used processing power in GEE. Using a significantly reduced number of
bands, identified as the most important, still allows for the detection of landslides with an
OA of 89%, and it also significantly reduces computation efforts in GEE. Computational
savings revealed time savings of up to 87%, peak memory reduction of up to 72%, and a
decrease in used operations of up to 23%. The computational time for our ML-LaDeCORsat
scripts when applied to other landslide case study areas will depend mainly on the size of
the study area. Detailed accuracy assessment for running ML-LaDeCORsat with selected
important bands can be found in Supplementary Tables S7–S9.

Table 6. Measures of computational load of ML classifiers in GEE using all 39 or 20/15/10/5 selected
most important bands for the Japan case study.

Used Bands Classifier
Validation Pixels All Pixels EECU

Minutes 1
Peak

Memory (MB) 1
Count of

Operations 1
OA BA OA BA

All
40

bands

CART 0.883 0.869 0.883 0.869 3.1 19,515,864 2490

RF 0.889 0.876 0.889 0.876 37.9 23,429,664 2490

GTB 0.919 0.894 0.919 0.894 47.1 26,217,076 2490

SVM 0.888 0.871 0.888 0.871 53.6 62,084,948 1834

NB 0.668 0.607 0.668 0.607 2.7 19,359,664 1830

20 most
important

bands

CART 0.881 0.866 0.881 0.866 2.4 24% 9,168,112 53% 2068 17%

RF 0.891 0.875 0.891 0.875 20.0 47% 15,366,896 34% 2068 17%

GTB 0.917 0.894 0.917 0.894 17.6 63% 17,570,796 33% 2088 16%

15 most
important

bands

CART 0.881 0.872 0.881 0.872 2.2 29% 7,940,596 59% 2018 19%

RF 0.891 0.875 0.891 0.875 12.8 66% 14,440,848 38% 2018 19%

GTB 0.913 0.892 0.913 0.892 13.2 72% 16,044,596 39% 2018 19%

10 most
important

bands

CART 0.881 0.875 0.881 0.875 2.1 32% 6,713,312 66% 1968 21%

RF 0.885 0.874 0.885 0.874 14.6 61% 13,510,296 42% 1968 21%

GTB 0.910 0.890 0.910 0.89 9.5 80% 15,033,080 43% 1968 21%

5 most
important

bands 2

CART 0.868 0.865 0.868 0.865 2.0 36% 5,402,080 72% 1918 23%

GTB 0.890 0.881 0.890 0.881 6.3 87% 14,090,680 46% 1918 23%
1 and resulting percentual computational savings compared to using all 40 bands. 2 not available for RF due to
minimum of 10 nodes requirement.

If our shared scripts are applied to other landslide case study areas, computational
measures will depend mainly on the size of the study area.

3.3. Transfer Learning

Results for across-domain transfer learning investigations using the best-performing
classifier (GTB) for ML-LaDeCORsat are presented in Figure 10.

For each case study site, OA, BA, and Recall metrics are plotted against different
training options: using all training samples from (1) the target site, (2) all other sites,
(3) the “best performing” other sites, 4–10) the “best performing” other sites plus a subset
(50/40/30/20/10/5/1%) of the target site. The “best performing” other sites have been
identified by comparing detection accuracies for a target site using all possible combinations
of across-domain training sites (e.g., training option for JPN target site: HTI only; PNG
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only; NZL only; HTI and PNG; PNG and NZL; HTI and NZL; all three). Consequently,
HTI and PNG combined resulted in the best-performing training sites for target JPN. JPN
and PNG combined resulted in the best-performing training sites for target HTI. The best
results for PNG delivered the GTB classifier trained by only JPN. For NZL, all other three
sites combined resulted as the best option. Detailed accuracy assessment for across site
transfer learning can be found in Supplementary Tables S10–S13.
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Figure 10. Across sites transfer learning and accuracies using the best-performing classifier (GTB)
for ML-LaDeCORsat and “all pixel” validation. OA, BA, and recall metrics of accuracy are plotted
against different training options: using all training samples from the target site (first position in
each graph), all sites (second), all other sites without target site (third), and the “best performing”
other sites plus a subset (50/40/30/20/10/5/1%) of the target site (all other positions). The “best
performing” other sites have been identified by comparing detection accuracies for a target site using
all possible combinations of across-domain training sites (e.g., training option for JPN target site: HTI
only; PNG only; NZL only; HTI and PNG; PNG and NZL; HTI and NZL; all three).
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4. Discussion and Conclusions

We propose a novel machine learning-based approach for Coseismic Landslide Detec-
tion using Combined Optical and Radar Satellite Imagery (ML-LaDeCORsat), to identify
the locations of landslides using freely available imagery in GEE. Furthermore, we demon-
strate the improved reliability and accuracy of the approach by comparing its performance
with other methods using a landslide event triggered by four different earthquake case
studies. ML-LaDeCORsat is an automated approach that is freely available on GEE. The
required training data is also available and, therefore, does not have to be created by the
user. These script and training data facilitate fast (6.3–47.1 EECU minutes for GTB) and
reliable (0.890–0.919 OA for GTB) identification of coseismic landslides as part of disaster
management on a global scale.

Given that the main purpose of rapidly identifying landslides is to improve disas-
ter management responses, accuracy is a key criterion for any approach. The prediction
accuracy is impacted by several aspects, including ML sampling design (number of sam-
pling points, distribution and density, topographic and other factors to be considered in a
stratified sampling approach), spatial accuracy and precision of geo-referenced landslide
inventory polygons, used satellite imagery and derived pseudobands, image processing
steps, the used ML classifier, its parameters, and the chosen evaluation metrics. In this
study, all these aspects were carefully investigated and addressed to achieve the best
possible landslide detection accuracy in GEE while using ready-made datasets in GEE.
Comparisons with existing approaches [19,29,31–34,38–42,44–48] demonstrated superior
performance of ML-LaDeCORsat of at least 10% higher detection accuracy.

Compared to previous RS-based landslide detection research, this study has, to our
knowledge for the first time in literature, combined various relevant landslide conditioning
bands utilizing S2 spectral reflectance bands and indices with radar-derived backscatter
change information into a single feature matrix used to train a ML model. Furthermore, the
performance of the ML-LaDeCORsat model has been tested by applying different available
GEE ML classifiers and compared to existing solutions incorporating all validation sampling
points, but then also using all pixels to have the best possible accuracy assessment. The
GTB ML classifier revealed the best prediction results, for all study sites with OA of 92%
compared to CART with 88%, RF with 89%, SVM with 89%, and NB with 66% validation
pixels correctly classified, taking the JPN case study as an example.

A landslide-specific sampling design combined with a novel slope- and slope-buffer-
based masking approach was demonstrated to be highly effective in reducing FP, in partic-
ular in scenarios where a landslide flow area reached pixels with slopes below the slope
threshold. In addition, applying a Gaussian kernel filter to the predicted landslide map
helped to remove isolated single FP pixels. All four case study sites included a large varia-
tion of sparse to densely vegetated areas, suggesting that the proposed landslide detection
solution performs well across different vegetation cover.

In summary, the introduced novel ML-LaDeCORsat approach significantly improves
landslide detection through image combining optical and radar imagery and ML and is
easily adaptable to other landslide scenarios with the GEE script being available.

Pixel size, source data accuracy, and imagery availability on GEE pose limitations on
ML-LaDeCORsat that could be partially addressed in future studies. In case a sampling
pixel is located at the edge of a landslide, it is either defined as a landslide pixel or as
a non-landslide one, depending on whether the respective part of a landslide inventory
polygon covers more (or less) than 50% of an image pixel. Smaller imagery pixel size and
more accurate landslide inventory boundaries will lower the potential occurrences of such
false sampling cases and, consequently, improve detection accuracies. Sampling pixels
located on landslide inventory edges could also be removed or avoided. In regard to the
quality of the landslide inventory dataset used, it was discovered that at a few locations,
in particular at the edge of some landslide polygons, the inventory did not always match
with the visual landslide information available from a very high (sub-meter) resolution
true-color satellite composite (accessed through Google Earth Pro). A manual correction of
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these mismatches could potentially further improve prediction accuracies. A few of the
randomly distributed training and validation samples were positioned over pixels located
near the edge of a landslide inventory polygon, causing the use of a potential false sample.
Although an undertaken verification of sampling points did not reveal any false samples, it
was not possible to manually inspect all of them due to the large amount of sampling points
(60,000 for each study site). Detection results could be further improved by incorporating
each of the following additional bands—if made available in GEE at a reasonably high
spatial resolution (e.g., of 20 m or better): TWI, STI, geological structure, and soil moisture
data from advanced SAR processing [80], or a raster image with annual rainfall data. This
study also lacked post-earthquake elevation data, but if available, the inclusion of data
containing precise elevation changes could potentially further enhance the accuracy of the
detection results. Although transfer learning investigations confirmed the model’s general
applicability of ML-LaDeCORsat, strategies for source and target domain selection, and
specific impacts on landslide classification performance could be further explored [81].
Lastly, the availability of post-earthquake S1 imagery and near cloud-free S2 imagery does
impact timely landslide detection when using our approach.

There are plans to extend this work. Firstly, we hope to further improve detection
results by considering the pixel neighborhoods within the ML classification—similar to [38]
and by including additional imagery that is not available in GEE, that is PlanetScope
(Dove/SuperDove) or VHR historical RGB Satellite Imagery extracted from GE [82]. Sec-
ondly, we plan to convert our GEE JavaScript solution into a GEE Python Notebook to
access TensorFlow libraries for further advancing the ML model. Thirdly, our approach
could be tested with different landslide types, such as avalanche or mudslide where optical
and radar input imagery likely comprises different spectral characteristics. It may be partic-
ularly important to apply the approach to landslide events triggered by extreme weather
events, such as heavy rainfall, which are forecast to become more frequent or more intense
under anthropogenic climate change [83]. For example, the rainfall associated with tropical
cyclones (also known as hurricanes or typhoons) is known to trigger landslide events
and is forecast to increase in intensity [84–86]. Depending on data availability, further re-
search may provide insights into how factors such as soil moisture and geological structure
can affect the model’s generalizability. Lastly, the suggested ML-LaDeCORsat approach
could be adapted to improve existing work on landslide susceptibility [11–13]. Accurate
and rapid identification of landslides will likely become more important because extreme
weather events are forecast to become more frequent, implying an increased likelihood of
earthquakes following heavy precipitation events, which would increase the number of
associated landslides.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/rs16101722/s1, Table S1. Accuracy assessment for ML-LaDeCORsat
applied to JPN and HTI study sites. Table S2. Accuracy assessment for ML-LaDeCORsat applied to
PNG and NZL study sites. Table S3. Accuracy Assessment of existing landslide detection methods
for JPN case study. Table S4. Accuracy Assessment of existing landslide detection methods for
HTI case study. Table S5. Accuracy Assessment of existing landslide detection methods for PNG
case study. Table S6. Accuracy Assessment of existing landslide detection methods for NZL case
study. Table S7. Normalized sorted band importance outputs for ML-LaDeCORsat for each study site
using GTB, CART, or RF ML classifier, sorted by their overall sum. Table S8. Accuracy Assessment
for ML-LaDeCORsat using selected bands—case study JPN. Table S9. Accuracy Assessment for
ML-LaDeCORsat using selected bands—case study HTI. Table S10. Accuracy Assessment for ML-
LaDeCORsat using Transfer Learning for JPN. Table S11. Accuracy Assessment for ML-LaDeCORsat
using Transfer Learning for HTI. Table S12. Accuracy Assessment for ML-LaDeCORsat using Transfer
Learning for PNG. Table S13. Accuracy Assessment for ML-LaDeCORsat using Transfer Learning for
NZL. Table S14. Temporal filtering of utilized S2, S1, P2 imagery.
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Abbreviations
The following abbreviations are used in this paper:

AOI Area of interest
BA Balanced Accuracy
BSI Bare Soil Index
CART Classification and Regression Trees
CE Commission Error
CNN Convolutional Neural Network
DL Deep Learning
EECU Earth Engine Compute Unit
ESA European Space Agency
FN False Negative
FP False Positive
gDEM Global Digital Elevation Model
GE Google Earth
GEE Google Earth Engine
GTB Gradient Tree Boost
IR Infra-Red
iSLIP Improved Sudden Landslide Identification Product
L8 Landsat-8
LULC Land Use Land Cover
ML Machine learning
MODIS Moderate Resolution Imaging Spectroradiometer
Narea Area for negative training samples
N-Barea Area for negative training samples inside ring-buffers
NASA National Aeronautics and Space Administration
NB Naive Bayes
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NDVI Normalized Difference Vegetation Index
NIR Near-Infra-Red
NRT Near real-time
OA Overall accuracy
OE Omission error
PCA Principal component analysis
P2 Palsar-2
QP Quality percentage
RF Random Forest
RS Remote Sensing
S1 Sentinel-1
S2 Sentinel-2
SIAC Sensor Invariant Atmospheric Correction
SLIP Sudden Landslide Identification Product
SR Surface reflectance
STI Sediment Transport Index
SVM Scalable Vector Machine
SWIR Short-Wave Infra-Red
TA Training accuracy
TN True Negative
TOA Top-Of-Atmosphere (reflectance)
TOA2SR Top of Atmosphere reflectance corrected to Surface Reflectance
Parea Area for positive training samples (ground truth)
TP True positive
TWI Topographic Wetness Index
VA Validation Accuracy
VHR Very high-resolution
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