elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SAR Coherence Estimation by Composition of Subsample Estimates and Machine Learning

Adam, Nico Alexander (2024) SAR Coherence Estimation by Composition of Subsample Estimates and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, Seiten 15957-15970. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2024.3421670. ISSN 1939-1404.

[img] PDF - Postprintversion (akzeptierte Manuskriptversion)
6MB

Offizielle URL: https://ieeexplore.ieee.org/document/10582426

Kurzfassung

SAR coherence magnitude is an essential parameter in SAR interferometry. This is the reason why current interferometric wide area ground motion services require the estimation of the coherence magnitude as accurately and computationally effectively as possible. The objective of this article is to improve the accuracy of this coherence estimation compared to known estimators, especially when estimating low coherences and working with a small, i.e. N < 30, but also large number of samples, i.e. hundred or more. Precisely, this article proposes the interferometric coherence magnitude estimation by composition of subsample estimates and machine learning (ML). The principle is to partition the given sample and to estimate coherences on these independent subsamples using different coherence magnitude estimators. It results in a non-parametric and automated statistical inference. It is shown that the composite ML estimator has a high estimation quality yet without prior information, provides a deterministic estimate and is numerically efficient, it is suitable for general InSAR applications and operational systems. Adequate computational performance results from the fact that no iteration, numerical integration, bootstrapping, or bagging are part of the composite estimator.

elib-URL des Eintrags:https://elib.dlr.de/206073/
Dokumentart:Zeitschriftenbeitrag
Titel:SAR Coherence Estimation by Composition of Subsample Estimates and Machine Learning
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Adam, Nico AlexanderNico.Adam (at) dlr.dehttps://orcid.org/0000-0002-6053-0105NICHT SPEZIFIZIERT
Datum:4 Juli 2024
Erschienen in:IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.1109/JSTARS.2024.3421670
Seitenbereich:Seiten 15957-15970
Verlag:IEEE - Institute of Electrical and Electronics Engineers
ISSN:1939-1404
Status:veröffentlicht
Stichwörter:coherence magnitude, composite estimator, degree of coherence, distributed scatterer in SqueeSAR or CAESAR or phase linking, interferometric SAR (InSAR), supervised machine learning
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Adam, Nico Alexander
Hinterlegt am:03 Sep 2024 10:06
Letzte Änderung:01 Okt 2024 13:39

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.