Adam, Nico Alexander (2024) SAR Coherence Estimation by Composition of Subsample Estimates and Machine Learning. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 17, Seiten 15957-15970. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/JSTARS.2024.3421670. ISSN 1939-1404.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
6MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10582426
Kurzfassung
SAR coherence magnitude is an essential parameter in SAR interferometry. This is the reason why current interferometric wide area ground motion services require the estimation of the coherence magnitude as accurately and computationally effectively as possible. The objective of this article is to improve the accuracy of this coherence estimation compared to known estimators, especially when estimating low coherences and working with a small, i.e. N < 30, but also large number of samples, i.e. hundred or more. Precisely, this article proposes the interferometric coherence magnitude estimation by composition of subsample estimates and machine learning (ML). The principle is to partition the given sample and to estimate coherences on these independent subsamples using different coherence magnitude estimators. It results in a non-parametric and automated statistical inference. It is shown that the composite ML estimator has a high estimation quality yet without prior information, provides a deterministic estimate and is numerically efficient, it is suitable for general InSAR applications and operational systems. Adequate computational performance results from the fact that no iteration, numerical integration, bootstrapping, or bagging are part of the composite estimator.
elib-URL des Eintrags: | https://elib.dlr.de/206073/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||
Titel: | SAR Coherence Estimation by Composition of Subsample Estimates and Machine Learning | ||||||||
Autoren: |
| ||||||||
Datum: | 4 Juli 2024 | ||||||||
Erschienen in: | IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Ja | ||||||||
Gold Open Access: | Ja | ||||||||
In SCOPUS: | Ja | ||||||||
In ISI Web of Science: | Ja | ||||||||
Band: | 17 | ||||||||
DOI: | 10.1109/JSTARS.2024.3421670 | ||||||||
Seitenbereich: | Seiten 15957-15970 | ||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||
ISSN: | 1939-1404 | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | coherence magnitude, composite estimator, degree of coherence, distributed scatterer in SqueeSAR or CAESAR or phase linking, interferometric SAR (InSAR), supervised machine learning | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||
Hinterlegt von: | Adam, Nico Alexander | ||||||||
Hinterlegt am: | 03 Sep 2024 10:06 | ||||||||
Letzte Änderung: | 01 Okt 2024 13:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags