Nishi, Yasunari und Krumbein, Andreas und Knopp, Tobias und Probst, Axel und Grabe, Cornelia (2024) On the Generalization Capability of a Data-Driven Turbulence Model by Field Inversion and Machine Learning. Aerospace, 11 (7), Seiten 1-19. Multidisciplinary Digital Publishing Institute (MDPI). doi: 10.3390/aerospace11070592. ISSN 2226-4310.
|
PDF
- Verlagsversion (veröffentlichte Fassung)
12MB |
Offizielle URL: https://www.mdpi.com/2226-4310/11/7/592
Kurzfassung
This paper discusses the generalizability of a data-augmented turbulence model with a focus on the field inversion and machine learning approach. It is highlighted that the augmented model based on two-dimensional (2D) separated airfoil flows gives poor predictive capability for a different class of separated flows (NASA wall-mounted hump) compared to the baseline model due to extrapolation. We demonstrate a sensor-based approach to localize the data-driven model correction to tackle this generalizability issue. Furthermore, the applicability of the augmented model to a more complex aeronautical three-dimensional case, the NASA Common Research Model configuration, is studied. Observations on the pressure coefficient predictions and the model correction field suggest that the present 2D-based augmentation is to some extent applicable to a three-dimensional aircraft flow.
| elib-URL des Eintrags: | https://elib.dlr.de/206063/ | ||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||
| Titel: | On the Generalization Capability of a Data-Driven Turbulence Model by Field Inversion and Machine Learning | ||||||||||||||||||||||||
| Autoren: |
| ||||||||||||||||||||||||
| Datum: | 20 Juli 2024 | ||||||||||||||||||||||||
| Erschienen in: | Aerospace | ||||||||||||||||||||||||
| Referierte Publikation: | Ja | ||||||||||||||||||||||||
| Open Access: | Ja | ||||||||||||||||||||||||
| Gold Open Access: | Ja | ||||||||||||||||||||||||
| In SCOPUS: | Ja | ||||||||||||||||||||||||
| In ISI Web of Science: | Ja | ||||||||||||||||||||||||
| Band: | 11 | ||||||||||||||||||||||||
| DOI: | 10.3390/aerospace11070592 | ||||||||||||||||||||||||
| Seitenbereich: | Seiten 1-19 | ||||||||||||||||||||||||
| Herausgeber: |
| ||||||||||||||||||||||||
| Verlag: | Multidisciplinary Digital Publishing Institute (MDPI) | ||||||||||||||||||||||||
| Name der Reihe: | Data-Driven Aerodynamic Modeling | ||||||||||||||||||||||||
| ISSN: | 2226-4310 | ||||||||||||||||||||||||
| Status: | veröffentlicht | ||||||||||||||||||||||||
| Stichwörter: | turbulence modeling; data-driven; machine learning; adverse pressure gradient | ||||||||||||||||||||||||
| HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||
| HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||
| HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||
| DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||||||||||
| Standort: | Göttingen | ||||||||||||||||||||||||
| Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, GO | ||||||||||||||||||||||||
| Hinterlegt von: | Nishi, Yasunari | ||||||||||||||||||||||||
| Hinterlegt am: | 05 Nov 2024 16:06 | ||||||||||||||||||||||||
| Letzte Änderung: | 05 Nov 2024 16:06 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags