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Abstract: This paper discusses the generalizability of a data-augmented turbulence model with a focus
on the field inversion and machine learning approach. It is highlighted that the augmented model based
on two-dimensional (2D) separated airfoil flows gives poor predictive capability for a different class
of separated flows (NASA wall-mounted hump) compared to the baseline model due to extrapolation.
We demonstrate a sensor-based approach to localize the data-driven model correction to tackle this
generalizability issue. Furthermore, the applicability of the augmented model to a more complex
aeronautical three-dimensional case, the NASA Common Research Model configuration, is studied.
Observations on the pressure coefficient predictions and the model correction field suggest that the
present 2D-based augmentation is to some extent applicable to a three-dimensional aircraft flow.

Keywords: turbulence modeling; data-driven; machine learning; adverse pressure gradient

1. Introduction

While scale-resolving simulations for turbulent flows, such as large-eddy simulations
(LES) or direct numerical simulations (DNS), are becoming realizable at low to modest
Reynolds numbers due to the continuous increase in computational resources, they are still
too expensive to be used in most of today’s industrial aerodynamic design processes. Hence,
Reynolds-averaged Navier–Stokes (RANS) simulations have been a standard tool, which
deal with the statistically averaged mean flow equations and model all turbulent scales.
While RANS computations provide fast and reliable prediction for canonical flows, there are
still challenges to accurately simulate complex flows, including adverse pressure gradient
flows and vortical flows. Despite the importance of the modeling of such flow phenomena
and much progress achieved in this field, the developments with classical approaches seem
to have stagnated in the past decades [1]. This has motivated the turbulence modeling
community to utilize the fast-growing machine learning techniques as a new tool to give
new impetus to RANS model improvement.

Some of the pioneering works in data-driven turbulence modeling include the Gene
Expression Programming (GEP) of Weatheritt and Sandberg [2], the Sparse Regression of
Turbulent stress Anisotropy (SpaRTA) symbolic-regression approach of Schmelzer et al. [3],
the Tensor Basis Neural Network (TBNN) of Ling et al. [4], and the Field Inversion and
Machine Learning (FIML) of Singh and Duraisamy [5]. The first two are often classified as
“open-box” approaches that provide explicit mathematical expressions that can be easily
incorporated into existing CFD solvers and can allow the modelers to verify the physical
plausibility of the derived model. The latter two approaches are usually referred to as
“black-box” or “gray-box” techniques due to their use of artificial neural networks (ANNs)
or random forests, which offer flexible approximations of the complex mapping between
flow features and targeted model correction terms. Although all those frameworks have
shown their potential to offer improved predictive capability, it has been revealed that

Aerospace 2024, 11, 592. https://doi.org/10.3390/aerospace11070592 https://www.mdpi.com/journal/aerospace

https://doi.org/10.3390/aerospace11070592
https://doi.org/10.3390/aerospace11070592
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com
https://doi.org/10.3390/aerospace11070592
https://www.mdpi.com/journal/aerospace
https://www.mdpi.com/article/10.3390/aerospace11070592?type=check_update&version=2


Aerospace 2024, 11, 592 2 of 19

they share a common issue: the data-driven models perform well only for flow cases that
are very similar to the training cases. Moreover, most of the works in the literature are
restricted to the investigation of relatively simple two-dimensional flow configurations.
Three-dimensional, industry-relevant complex flows are typically involved with multiple
characteristic flow phenomena at different locations. In such a scenario, an ideal data-
driven model should be sensible to each physical phenomenon and be modified from
the original form wherever necessary while preserving the baseline model’s accuracy at
worse. To this date, such a general model has not been found by data-driven methods to
the authors’ best knowledge. It should be noted that recent efforts towards improving the
generalizability of the data-driven models are found in, e.g., [6,7].

In the present paper, our aim is not to present a new generalizable data-driven model,
but is to analyze the generalizability of one data-driven model obtained in [8] in both 2D-
and 3D-flows including flow scenarios that are different from training cases. In addition,
we present a sensor-based approach to localize the model augmentation and demonstrate
it in 2D examples.

The structure of the paper is as follows: In Section 2, we briefly summarize the FIML
approach and the training strategy of the model we consider in this paper. Section 3 addresses
the evaluations for the 2D-flow cases, and in Section 4, we discuss the applicability of the
2D-based model to an industry-relevant 3D aircraft flow configuration.

2. Methodology

In the present work, we focus on one data-driven turbulence model presented in [8].
Therein, the baseline model is the negative Spalart–Allmaras (SA-neg) turbulence model [9],
which was enhanced in [8] by training for several 2D airfoil flows using experimental data
via the field inversion and machine learning framework.

While the reader is referred to the original publication for a comprehensive description,
the fundamentals of the FIML approach and the brief descriptions of the chosen machine
learning model are given in Section 2.1 and Section 2.2, respectively. The numerical method
to solve the compressible RANS equations with the augmented SA-neg model is given
in Section 2.3. Finally, in Section 2.4, we present an approach to localize the application
of the model augmentation in attached turbulent boundary layers in an adverse pressure
gradient, which will be demonstrated for 2D-flows in Section 3.

2.1. Field Inversion and Machine Learning

The field inversion and machine learning method, originally proposed in [5], is an
approach that allows to augment an existing turbulence model by making use of high-
fidelity data and machine learning techniques. The fundamental idea is to introduce a
model correction term into a baseline turbulence model and to train a machine learning
model (e.g., neural network) that predicts the correction term based on the local flow
states. The baseline model we consider is the negative Spalart–Allmaras turbulence model
(SA-neg) [9], and the correction term β is introduced as a multiplier of the production term,
which reads

Dν̃

Dt
= βP − D +

1
σ

[
∇ · ((ν + ν̃)∇ν̃) + cb2(∇ν̃)2

]
, (1)

where ν̃ denotes the SA variable, P is the production term, and D is the destruction term.
Note that ν is the kinematic viscosity, and cv1, cb2, and σ are model-specific constants (see
the original publications [9] for the details).

Given high-fidelity reference data, such as experimental data for a certain flow case,
one can formulate an inverse problem for finding an optimal field of β, which minimizes
the discrepancy between the RANS solution and the reference solution. More formally,
a cost function such as

I =
1

2Vtot

N

∑
i

Vi(qi,re f − qi,RANS(β))2 (2)
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is minimized while all the governing equations are satisfied. Here, qi,re f and qi,RANS are,
respectively, the reference solution and its RANS prediction of the quantity of interest at
the i-th grid cell. The N denotes the total number of grid cells, Vi is the cell volume at the
i-th cell, and Vtot is the total cell volume. The optimized β field is obtained by solving this
inverse problem; however, those values are not directly applicable to a new simulation with
different flow conditions or geometry. To this end, another key element of the FIML is to
find a functional mapping between the correction term β and the flow state (U, ν̃), such that
one can predict the field of β for an unseen flow case. Typically, a set of non-dimensional
quantities derived from the flow state (U, ν̃), often called “flow features” η, is selected,
and a machine learning model, such as a neural network, that maps the feature space η to β
is trained.

The above-mentioned inversion process and the training of the machine learning
model can be performed with separated two-steps or with an integrated single step. The for-
mer is often referred to as the classic FIML, which corresponds to the approach presented
in [5]. On the other hand, the direct FIML is the latter approach proposed in [10] and also
used for the model we use in the present work. While in the classic FIML, the design
variable of the inverse optimization problem is the field of β, in the direct FIML, the design
variable is the machine learning model parameter w, and the field of β is predicted by the
embedded ML model during the entire process. Thus, the cost function can be rewritten as

I =
1

2Vtot

N

∑
i

Vi(qi,re f − qi,RANS(β(η, w)))2. (3)

The workflow of the FIML framework is depicted in Figure 1. Note that due to the
high-dimensional nature of the inverse problem posed here, a gradient-based optimization
method is preferred and thus the adjoint method is utilized.

Figure 1. The workflow of the FIML.

2.2. A Closed-Form Correction with Radial Basis Function

While the FIML approach is often used with black-box machine learning algorithms,
such as neural networks, Jäckel (2023) [8] presented a closed-form model correction using a
Gaussian radial basis function (RBF):

β(ηi) = 1 − β̂e−∑i
(ηi−η0,i)

2

ai (4)

where ηi are the input flow features and three features were used in his work,

η1 = log10
P
D

, η2 = log10
ν̃

ν
, η3 = log10

νt|S|
u2

τ
(5)
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where νt denotes the turbulent viscosity, S the strain rate, and uτ the friction velocity
mapped from the wall surfaces to all nearest field points. Due to the closed-form expression,
it is better interpretable than the one with neural networks. The model was optimized
through the multi-case direct FIML training (see the list of training cases in Table 1), and the
resulting model parameter values are summarized below

β̂ = 0.7059

η0,0 = 1.372, η0,1 = 1.959, η0,2 = 0.7328

a0 = 1.607, a1 = 1.993, a2 = 1.437 .

(6)

Throughout this paper, we use this specific RBF model to augment the original SA-
neg model.

Table 1. Summary of the training cases and the flow conditions used in [8], including the Mach
numbers Ma, Reynolds numbers Re, angles of attack α, and reference data.

Test Case Ma Re α [deg] Reference Data

S809 0.1 2 × 106 8.2, 16.24 cp [11]

HGR-01 0.07 0.65 × 106 13.7 cl [12]

RAE2822 0.721 8.79 × 106 5.67 cp

2.3. Numerical Set-up

The DLR TAU-code [13] is used as the CFD solver, which is a compressible, cell-
vertex-type finite-volume solver with dual-control volumes. A discrete adjoint solver is
also available in the TAU-code [14] and is used in the field inversion process. An implicit
backward Euler scheme with the lower-upper symmetric Gauss–Seidel (LU-SGS) scheme is
used for obtaining steady-state flow solutions.

For the FIML framework, the TAU code is coupled with the DLR’s SMARTy (Surrogate
Modeling for AeRo data Toolbox Python Package) toolbox [15], which is a modular Python
package (API) providing various data-driven techniques for aerodynamic simulations. It
offers a Python-level interface to operate TAU and wrappers around popular deep-learning
frameworks, such as PyTorch [16], which enables a flexible way of integrating the existing
CFD solver TAU and fast-growing external machine learning libraries.

2.4. Localized Model Correction with Sensor Functions for Adverse Pressure Gradient Flows

In Section 3, we demonstrate an approach to locally apply the data-driven model
corrections by using sensor functions designed for the attached turbulent boundary layers
in an adverse pressure gradient. The rationale behind this idea is that a data-driven model is
only applicable to flows that are very similar to its training cases, and, therefore, the model
augmentation should be deactivated where the local flow state is far from the training
scenarios. The necessity of different sets of model coefficients depending on the local
type of flow is also suggested in [17] based on the analysis of equilibrium turbulent flows.
The methodology presented here and the results shown in Section 3 are partly published as
a conference proceedings paper [18]. The conference paper includes an additional study
with a machine learning-based sensor to localize the model augmentation.

In the present work, we reformulated the production term βP of the original FIML
implementation such that (1 − f )P + f βP, where f is a blending factor ranging from
0 to 1. Here, with f = 1 everywhere, it falls back to the original FIML formulation,
i.e., “global” model correction. This reformulation is inspired by the work of Ling and
Kurzawski (2017) [19], where they blended a linear eddy-viscosity model and a quadratic
eddy-viscosity model in a similar manner. The choice of suitable sensors is not trivial,
but the present work utilizes a set of sensor functions proposed in [20], which is used
to modify the ω-equation of the SSG/LRR-ω model for adverse pressure gradient (APG)
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flows. The sensor is composed of three functions χ fb2 fb3 and is designed to detect the so-
called half-power law region emerging above the classical log-law region in APG turbulent
boundary layer flows. However, the data-driven model used here is not specifically targeted
to the half-power law region, and thus, we slightly adjusted them to detect the region up to
the edge of the boundary layer in this work. The values of χ fb2 fb3 are designed to range
between 0 and 1, and thus the modified production term reads (1 − χ fb2 fb3)P + χ fb2 fb3βP.

The three sensor functions are briefly described in the following: The first function
χ = χ(∆p+s , uτ/Ue) is an activation function that determines if the flow is at APG and
also if the flow is attached based on the boundary layer edge velocity Ue, and the non-
dimensional pressure gradient parameter ∆p+s = (ν/ρu3

τ)dP/ds. Therein, dP/ds denotes
the streamwise pressure gradient and uτ the friction velocity. The χ becomes unity where
∆p+s > ∆p+0 and uτ/Ue > 0. The threshold value ∆p+0 is set to 8 × 10−6. The sign of uτ/Ue
is calculated by taking the inner product of the velocity vector at the first node off the wall
and the edge velocity vector.

The second function fb2 acts as a blending function that shields the classical log-
law region.

fb2 = 0.5(tanh(ζ) + 1),

ζ =
y+ − y+incpt

cb2

(
c−1

s2 y+sqrt,min − cs2y+log,max

) (7)

with cb2 = 0.5, cs2 = 1.04, and y+incpt = 0.5(y+sqrt,min + y+log,max). The y+log,max defines the

outer edge of the log-law region and the y+sqrt,min is the location above which the half-power
law region emerges. These are determined by the empirical correlations based on the
friction Reynolds number Reτ = δuτ/ν and ∆p+s , which read

y+log,max = 1.68 Re1/2
τ

(
∆p+s

)−1/5 , (8)

y+sqrt,min = 4.05 Re1/2
τ

(
∆p+s

)−0.13 , (9)

where δ = δ99/0.94 is applied. The fb2 becomes zero below the outer part of the log-law
region and rapidly increases towards one in the border with the half-power law region.

The third function fb3 is another blending function, which determines the upper limit
of the modification:

fb3 = 1 − 0.5(tanh(ξ) + 1), (10)

ξ =
η′ − η′

m3
cb3

(
η′

u3 − η′
l3
) , η′ =

y
δ

(11)

with cb3 = 0.525 and η′
m3 = 0.5

(
η′

l3 + η′
u3
)
. The value of fb3 becomes approximately unity

where y/δ < η′
l3 and fb3 ≈ 0 for y/δ > η′

u3. Here, η′
l3 = 0.95, η′

u3 = 1.05 are used in the
present work, meaning fb3 remains unity up to the edge of the boundary layer. Note that
η′

l3 = 0.2, η′
u3 = 0.27 are used in the original work [20].

3. Two-Dimensional Flow Cases
3.1. NASA Wall-Mounted Hump

The augmented SA-neg model trained for multiple airfoil flows with separation
has been tested on the 2D NASA wall-mounted hump (no plenum) case [21]. The flow
conditions are Mach number Ma = 0.1 and the Reynolds number based on the hump chord
Rec = 936,000. It is a representative test case of flow separation and reattachment on a
smooth surface with pressure gradients. For this case, traditional RANS turbulence models
are known to produce a delayed reattachment due to the under-prediction of the Reynolds
stresses. While this case exhibits flow separation due to an adverse pressure gradient
as in airfoil flow cases, it should be seen as a slightly different class of flows in terms of
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turbulence modeling. In airfoil flows at high incidence angles, traditional RANS models
tend to underpredict trailing-edge separation and the resulting overprediction of the lift
coefficient is a primary challenge. Here, the reattachment point in a steady simulation is
more or less fixed at the trailing edge. On the other hand, for the class of NASA hump
flows, the primary attention is typically more on the reattachment prediction rather than
the separation onset, which is mostly fixed by the strong pressure rise due to a sudden
change in geometry.

Figure 2 shows comparisons of the skin friction coefficient. As can be seen, the aug-
mented model exhibits the flow reattachment further downstream than the baseline SA-neg
model, which is already far from the experimental data. This is an example where a data-
driven model gives a worse prediction than its original model due to undesired model
corrections. Typically, this occurs due to extrapolation of the machine learning model, mean-
ing that the model makes prediction based on data that lie outside the scope of the training
data. In this particular case, the machine learning model predicts the correction term β
based on the local flow features (η1−3) at each grid point. If the values of those flow features
are far from the training data’s counterpart, the prediction of β at that grid point by the
machine learning model would have high uncertainty. This uncertainty, i.e., the extent of
extrapolation, can be quantified by using some distance metric, such as the Mahalanobis
distance, which will be detailed later. Furthermore, even if there exist close training data
(i.e., η1−3 ≈ ηtrain

1−3 ), a completely different correction term might be required. This could
happen when the selected flow features are insufficient to discern different underlining
flow physics and/or when the coverage of the training data is insufficient. In Figure 2,
the results of another data-driven model by gene-expression programming (GEP) trained
in [22] are also shown together with its baseline Speziale–Sarkar–Gatski (SSG) model [23].
The SSG-GEP model here was trained using large-eddy simulation (LES) data for the curved
backward-facing step by Bentaleb et al. (2012) [24], whose nature is the same as the NASA
hump case. As anticipated, it shows a better reattachment prediction as extrapolation
should not happen as much as the augmented SA-neg model and interpolation is dominant.
Despite the difference in the underlining machine learning techniques, it illustrates that the
prediction of the present NASA hump test case can be improved by a data-driven model
with small extrapolation extent.

x/c

C
f

­0.5 0 0.5 1 1.5 2
­0.002

0

0.002

0.004

0.006

0.008

Exp.

SSG

SSG­GEP

SA­neg

SA­neg (augmented)

SA­neg (augmented)

+ APG sensor

Figure 2. Skin friction coefficient on the NASA wall-mounted hump. Results of the Speziale–Sarkar–
Gatski (SSG) Reynolds stress model and its data-enhanced model by gene-expression programming
(SSG-GEP) in [22] are also shown for comparison.
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The aforementioned Mahalanobis distance metric, which can quantify the extrapo-
lation extent, has been tested to obtain further insight, following [25]. The Mahalanobis
distance is a distance metric similar to the Euclidean distance; however, it only requires
to store the mean and covariance matrices of the training data to assess the extrapolation
extent for a new case. The Euclidean distance between an evaluation point and one of the
training data samples in the feature space reads

De =

√√√√ 3

∑
i=1

(ηi − ηtrain
i )2, (12)

where ηi are the flow features at a grid point of evaluation and ηtrain
i are those of the training

sample. By using this metric and the nearest neighbor search technique, the extrapolation
extent, i.e., how far the current data point is off from the training dataset, could be quan-
tified. However, this would require to store the entire training data samples. In contrast,
the Mahalanobis distance has a low memory requirement and provides similar quality
to the nearest neighbor Euclidean distance metric, as reported in [25]. The Mahalanobis
distance between an evaluation point and the distribution of the training data in feature
space is calculated as

Dm =
√
(η− µ)TV−1(η− µ), (13)

where µ and V−1 are the mean and inverse covariance matrix of the training data, respec-
tively. Note that the matrix notation is used for the flow features η.

For the augmented SA-neg model, the Mahalanobis distance is evaluated on the NASA
hump case (Figure 3). It can be observed that the extrapolation extent is higher (i.e., high
value of the Mahalanobis distance) in the region of the separated shear layer.

x/c

y
/c

­1 ­0.5 0 0.5 1 1.5 2 2.5

0

0.5

1

Dm

3.5

3

2.5

2

1.5

1

0.5

Figure 3. Mahalanobis distance metric on the NASA hump case evaluated for the augmented
SA-neg model.

The local model correction with the APG TBL sensor that was described in the previous
section was also tested. As shown in Figure 2, the prediction of the augmented model with
the sensor functions is almost the same as that of the baseline model. A comparison of the
field of β is illustrated in Figure 4. In global model augmentation, model correction is active
in a large part of the boundary layer (except the first half of the hump 0 < x/c < 0.6), as
well as inside a separation bubble. This includes a zero and favorable pressure gradient
region in the upstream (x/c < −1) and downstream of the hump (x/c > 1.5) (see Figure 5
for the pressure coefficient distribution). Model corrections in those region have been
suppressed by the introduction of the sensor, mainly the χ activation function that detects
an adverse pressure gradient region. Most of the model correction inside the separation
bubble is also deactivated, which is again presumably due to the χ activation function that
additionally excludes a separated boundary layer region.

As demonstrated here, the APG TBL sensor serves as a limiter or an additional “safety-
net” to preserve the predictive capability of the baseline model for untrained, non-airfoil
flows. The effect of introducing the sensor for trained, airfoil flow cases will be discussed
in the following section.
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(a) Field of β with global model augmentation.

x/c

y
/c

­1 ­0.5 0 0.5 1 1.5 2 2.5

0

0.5

1
β

0.9

0.8

0.7

0.6
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0.4

0.3

(b) Field of β with local model augmentation controlled by the APG sensor.

Figure 4. Comparison of the β-fields between global (a) and local (b) model augmentation for the
NASA hump.

x/c

C
p

­1 0 1 2

­1

­0.8

­0.6

­0.4

­0.2

0

0.2

SA­neg

SA­neg (augmented)

SA­neg (augmented) + APG sensor

Figure 5. Pressure coefficient cp on the NASA hump case. Note that the vertical axis is reversed.

3.2. HGR-01 Airfoil

The global and localized model corrections with the sensor are also compared for
the HGR-01 airfoil, whose 13.7 deg case was used as one of the training cases. The HGR-
01 airfoil was designed at the Technische Universität Braunschweig to study the mixed
leading-edge trailing-edge stall behavior [12]. The flow conditions are Ma = 0.07 and
Rec = 0.65 × 106, and the transition is fixed using experimentally measured transition loca-
tions. It is fixed at x/c = 0.002 on the suction side and at x/c = 0.95 on the pressure side.

Figure 6 shows the comparisons of the lift coefficient curve. Firstly, it should be
highlighted that the global model augmentation, SA-neg (augmented), gives a consistent
improvement in the lift prediction, while only one of the incidence angles was seen during
the training phase. Although not shown, the same holds for the S809 airfoil cases at various
angles of attack.
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Figure 6. Lift coefficient vs. angle of attack.

On the other hand, the local model augmentation, SA-neg (augmented) + APG sensor,
loses more prediction accuracy as the angle of attack increases. This can be explained as
follows: As shown in Figure 7a, there are two distinct regions where model correction is
active. The first region around 0 < x < 0.6 is in an attached boundary layer, and the second
one around x > 0.6 corresponds to the region downstream of the separation point. At low
angles of attack, model corrections in the latter are not dominant since the separation occurs
close to the trailing edge. However, at high angles of attack, their contribution to the entire
lift change becomes significant due to the earlier separation. The APG sensor deactivates
the model correction in this post-separation region (Figure 7b), and thus the accuracy loss
becomes larger at higher incidence angles.

In addition, Figure 8 shows the profile of the sensor value χ fb2 fb3 and β at the location
of x/c = 0.5 for the local model augmentation. The velocity profile normalized by the
reference velocity is also given. An increase in the sensor value from 0 to 1 at z/c ≈ 0.005 is
controlled by fb2 and a decrease at z/c ≈ 0.02 is controlled by the values of the fb3 function.
Note that χ, which is an activation function to determine an adverse pressure gradient and
flow separation, does not play a role on this wall normal profile. It can be observed that the
value of χ fb2 fb3 drops to zero, as expected, at around the location where the velocity takes
its maximum value. Also, the value of β is shielded in the near wall region (z/c < 0.005)
due to the fb2 function.

The accuracy loss by the local model augmentation is inevitable for this case, as the
global model augmentation should be seen as a locally optimal solution. The extent of the
accuracy loss is solely due to the a posteriori usage of the APG sensor function, which only
detects an attached boundary layer. Although still far from ideal, the data-augmentation
with this type of physics-based sensor could offer a compromised model, which provides
some improvement for target flow phenomena while not losing the predictive capability of
the baseline model at worse.



Aerospace 2024, 11, 592 10 of 19

x/c

y
/c

0 0.2 0.4 0.6 0.8 1

­0.1

0

0.1

0.2 β

0.9

0.8

0.7

0.6

0.5

0.4

0.3

(a) Field of β with global model augmentation.
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(b) Field of β with local model augmentation controlled by the APG sensor.

Figure 7. Comparison of the β-fields between global (a) and local (b) model augmentation at incidence
angle α = 12 deg.
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Figure 8. Wall profiles at x/c = 0.5 for the local model augmentation, α = 12 deg.

4. Application to Three-Dimensional Flows
4.1. Test Case: NASA Common Research Model

The present study considers the NASA Common Research Model (CRM) with hori-
zontal tailplanes (HTP) as a 3D test case to investigate the applicability of the 2D-based
model augmentation. The model does not include high-lift devices nor nacelles. The target
flow configuration is a Mach number Ma = 0.25 and a Reynolds number Re = 17 × 106,
which is selected from the ESWIRP (European Strategic Wind Tunnels Improved Research
Potential) wind tunnel campaign conducted at the European Transonic Windtunnel (ETW)
in 2014 [26]. Experimental data from the ESWIRP test campaign are publically available.
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The experimental pressure coefficients that are shown later against our CFD results are
taken from the Polar 251 dataset.

Figure 9 shows the measured lift coefficient curve over angles of attack. As can be
seen, there is a clear indication of stall at around α = 12.5 deg. We focus our study on
the pre-stall regime at two angles of attack, α = 10.92 deg and α = 12.35 deg. At both
angles of attack, the flow over the main wing should not be separated in the experiment,
but a relatively large adverse pressure gradient is present, which we expect would lead to a
certain degree of model correction when using the augmented SA-neg model.

Figure 9. Measured lift coefficient vs. angle of attack at the ESWIRP ETW test campaign.

Simulations were performed using the baseline SA-neg model and the augmented
SA-neg model. Note that the augmented SA-neg model is used without the sensor function.
As the flow remains attached on large parts of the wing, the augmentation should be
applied almost on the entire wing surface, i.e., the situation with the sensor is expected to
be similar to the 2D airfoil HGR-01 for an incidence angle smaller than 10 deg. The attached
boundary layer is subjected to a strong adverse pressure gradient, and hence, the model
augmentation is activated.

Figure 10 shows the overview of the computational grid used in this study. The base-
line grid is a fine solar grid from the Fourth AIAA Drag Prediction Workshop (DPW-IV) [27],
which has approximately 34.1 million points. This preexisting mesh also takes into account
the experimentally measured deformation of the main wing at α = 14 deg. Although this
is slightly mismatched with the angles of attack (α = 10.92 deg, α = 12.35 deg) considered
in this study, the overall lift load causing this deformation is not very different (cf. Figure 9)
and, therefore, should lead to comparable deformations. Thus, the authors think that this
potential mismatch can be considered negligible compared to the turbulence-modeling
effects and does not affect our main conclusions drawn in this study.
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(a) Iso-view of the surface mesh.

(b) Top-view on the main wing.

Figure 10. Overview of the NASA CRM mesh.

4.2. Results
4.2.1. Pressure Coefficients

Figures 11 and 12 show the predictions of the pressure coefficient over the main
wing simulated by the baseline SA-neg model and the augmented SA-neg model at each
incidence angle. As expected, the baseline model already shows good agreement with the
experimental data for both angles of attack since these are below the stall regime. Moreover,
the overall differences between the baseline model and the augmented model are relatively
small, especially in the inboard area (i.e., small non-dimensionalized spanwise location η̄),
and slightly larger in the outboard area. Here, the spanwise coordinate η̄ = y/B, B is the
wing span, and hence, η̄ = 0 at the wing root and η̄ = 1 at the wing tip. Moreover, note that
the notation of η̄ used traditionally in aircraft aerodynamics should not be confused with
the flow features η1, η2, η3 used in the augmented turbulence model. In addition, the model
correction is, as predicted, larger at the higher incidence angle due to a greater adverse
pressure gradient. Especially at α = 12.35 deg, the augmented model seems to give some
improvement around η̄ = 60.3%.

Notable differences are observed at η̄ = 95% of the α = 12.35 deg case. While the
baseline model preserves a clear suction peak, the augmented model shows a suction drop
near the leading edge, which is also present in the experimental data, and a following
short plateau, which is, however, not seen in the experiment. Visualizations of streamlines
projected onto the X-Z plane in Figure 13 suggest that these effects are due to a local
separation bubble that is only obtained with the augmented model. Although separation
is also the likely reason for the suction drop in the experiment, the deviations in cp at
x/c ≈ 0.2, as well as near the trailing edge, suggest a somewhat different pattern than
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predicted by the augmented model. Still, some improvement with respect to cp compared
to the fully attached flow prediction by the baseline model can be stated.

Figure 11. Prediction of the pressure coefficients over the main wing at different spanwise locations
for the incidence angle α = 10.92 deg. Note that η̄ represents the non-dimensionalized spanwise
location (η̄ = 100% at the wing tip).
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Figure 12. Prediction of the pressure coefficients over the main wing at different spanwise locations
for the incidence angle α = 12.35 deg. Note that η̄ represents the non-dimensionalized spanwise
location (η̄ = 100% at the wing tip).
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4.2.2. Model Correction Fields

Figures 14 and 15 show the iso-surfaces of the correction field β at each incidence angle.
For each iso-surface of two different values, β = 0.4 and β = 0.8 are visualized. It should be
recalled that the value β = 1.0 means that no model correction is introduced, and the smaller
the value is, the stronger the model correction is. Hence, relatively strong model corrections
are visualized by the iso-surface β = 0.4, and relatively mild corrections by β = 0.8. For
both angles of attack, the β = 0.4 iso-surface is mainly restricted to the main wing, which is
subjected to an adverse pressure gradient. Although the augmented model is trained for 2D
airfoil flows and the present case is a 3D-flow, the majority of the flow over the main wing
should be close to two-dimensional at these incidence angles. Therefore, the flow features
used in the 2D training are still considered to be valid and are responding to the adverse
pressure gradient flow. In fact, as illustrated in Figure 16, the correction field clearly resembles
that of 2D airfoil cases, such as the HGR-01 case when looking at the η̄ = 60.3% spanwise
location for the α = 12.35 deg case. These observations suggest that the data-driven model
correction inferred from the 2D dataset could partly be usable in the nearly 2D-flow regime
of a 3D-flow configuration. On the other hand, the β = 0.8 iso-surface not only surrounds
almost the entire wings and fuselage, but is also present in a few regions where the flow
should be highly three-dimensional (e.g., wing tips, wing–body juncture). Since the model
correction is not trained for such highly three-dimensional flows, the prediction accuracy
could potentially be harmed as the machine learning model is certainly extrapolating in such
a scenario. To avoid this, an ad hoc treatment by a similar sensor-based approach is required
in the 2D case, or more insights from a complete 3D training might be necessary.

(a) SA-neg (baseline)

(b) SA-neg (augmented)

Figure 13. Comparison of the flow field at the spanwise location η̄ = 0.95 for α = 12.35 deg colored
by Mach number. Streamlines projected onto the X-Z plane are shown together.
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(a) β = 0.4

(b) β = 0.8

Figure 14. Iso-surfaces of the model correction field β for α = 10.92 deg colored by the streamwise velocity.

(a) β = 0.4

Figure 15. Cont.
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(b) β = 0.8

Figure 15. Iso-surfaces of the model correction field β for α = 12.35 deg colored by the streamwise velocity.

Figure 16. The correction field β at spanwise location η̄ = 60.3 % for α = 12.35 deg.

5. Conclusions

The generalizability of a data-augmented Spalart–Allmaras turbulence model trained
via the field inversion and machine learning strategy was studied for two-dimensional (2D)
and three-dimensional (3D) aerodynamic flow cases. Throughout this paper, we focused
on one data-driven model with a closed-form expression that was trained for 2D separated
airfoil flows [8] in order to be consistent with the model and to have good interpretability
of the results.

In 2D-flow cases, while consistent improvements are observed in the airfoil flows,
the model corrections inferred from the embedded machine learning model could nega-
tively affect the prediction of the other flows, as shown in the NASA hump case. Using a
common machine learning terminology, one can say that the considered model augmentation
is “over-fitted” to the airfoil flow configurations. The detrimental effect of the data-driven
model corrections observed in the NASA hump case is a typical example of extrapolation,
meaning that the machine learning model is applied to the outside of the scope of training
data, and hence, its prediction has high uncertainty. To prevent the unwanted model cor-
rections, we introduced a set of sensor functions to localize the model corrections. With this
approach, the model is corrected only inside the attached boundary layer with an adverse
pressure gradient. While the sensor works as a limiter or an additional “safety net” to
preserve the predictive capability of the baseline model for non-airfoil flows, much of the
improvement for the airfoil flows at high incidence angles was lost due to the deactivation
of the model augmentation inside the separated shear layers. Nevertheless, the data aug-
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mentation with physics-based sensors could offer a compromised model, which provides
improvement for target flow phenomena while not losing the predictive capability of the
baseline model at worse.

Furthermore, the augmented model was applied to a 3D aircraft flow configuration,
the NASA Common Research Model (CRM) with horizontal tail-planes. This should be
seen as a preliminary exercise to investigate the generalizability of the 2D-based aug-
mentation to 3D flows. The data-augmented model produced similar predictions of the
pressure coefficients over the main wing to the baseline model with indications of some
improvement, especially for the higher incidence angle. The investigation of the correction
field revealed that relatively strong model corrections were restricted to the main wing
subjected to an adverse pressure gradient. In those regions, the flow should be close to
two-dimensional, and therefore, the features used in the 2D training are still considered to
be valid. On the other hand, relatively weak corrections are active in the majority of the
near wall regions, and a few regions where the flow should be highly three-dimensional
(e.g., wing tips, wing–body juncture). The latter could be harmful, and thus an ad hoc
treatment by a similar sensor-based approach is required in the 2D case, or more insights
from a complete 3D training might be necessary.

It is obvious that further studies are required towards achieving a more generalizable
model augmentation for 2D adverse pressure gradient flows with separation. As discussed
in the present study, the different modeling focuses between airfoil flows and the NASA
hump-like flows should be taken into account for this purpose. Also, future work in
3D-flows may include investigations on the post-stall regime of a 3D aircraft flow, which
could not be covered in the present work.
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