elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

A Learning Classifier System Approach toTime-Critical Decision-Making in Dynamic Alternate Airport Selection

Djartov, Boris und Sanaz, Mostaghim und Papenfuß, Anne und Wies, Matthias (2024) A Learning Classifier System Approach toTime-Critical Decision-Making in Dynamic Alternate Airport Selection. 2024 IEEE Congress on Evolutionary Computation (CEC), 2024-06-30 - 2024-07-05, Yokohama, Japan. doi: 10.1109/CEC60901.2024.10612016.

[img] PDF
524kB

Offizielle URL: https://www.researchgate.net/publication/382986703_A_Learning_Classifier_System_Approach_to_Time-Critical_Decision-Making_in_Dynamic_Alternate_Airport_Selection

Kurzfassung

The goal of the paper is to address the need for methods to handle time-sensitive, human-centered, multicriteria decision-making problems. In the current literature, prevalent methods rely on expressing decision-maker/stakeholder preferences through weights, ideal points, and trade-off matrices. However, these conventional approaches prove unsuitable for time-constrained, atypical, and stressful situations, such as emergencies. In such scenarios, where both time and additional factors significantly affect decision-making abilities, the effective utilization of advanced decision-making techniques becomes challenging. Therefore, this paper explores the possibility of how an intelligent agent might be used to provide possible courses of action to human decision-makers/stakeholders. The agent will be put to the test to tackle the dynamic alternate airport selection problem. In emergency and time-critical situations, like an engine fire or a medical emergency, there is often a need to select an alternate airport destination dynamically midflight. During such emergencies, a lot of information must be collected and evaluated by the pilots as a basis for the decision-making process. The pilots need to compare multiple characteristics of the available airports and weigh the pros and cons of each. Given the need for clear and interpretable retroactive analysis in decision-making in general and in the aviation field in particular, the focus was placed on more interpretable and explainable models from the field of AI. Due to this, the Learning Classifier System (LCS) is to be the primary model explored. The LCS is trained on a custom dataset composed of various decision-making scenarios. The approach shows promising results and appears to merit further investigation.

elib-URL des Eintrags:https://elib.dlr.de/205916/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:A Learning Classifier System Approach toTime-Critical Decision-Making in Dynamic Alternate Airport Selection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Djartov, Borisboris.djartov (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Sanaz, Mostaghimsanaz.mostaghim (at) ovgu.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Papenfuß, AnneAnne.Papenfuss (at) dlr.dehttps://orcid.org/0000-0002-0686-7006167656308
Wies, MatthiasMatthias.Wies (at) dlr.dehttps://orcid.org/0000-0001-6514-3211167656309
Datum:Juni 2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
DOI:10.1109/CEC60901.2024.10612016
Status:veröffentlicht
Stichwörter:multi-criteria decision-making, multi-attribute decision-making, learning classifier system
Veranstaltungstitel:2024 IEEE Congress on Evolutionary Computation (CEC)
Veranstaltungsort:Yokohama, Japan
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:30 Juni 2024
Veranstaltungsende:5 Juli 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Luftverkehr und Auswirkungen
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L AI - Luftverkehr und Auswirkungen
DLR - Teilgebiet (Projekt, Vorhaben):L - Faktor Mensch
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugführung > Systemergonomie
Hinterlegt von: Djartov, Boris
Hinterlegt am:17 Sep 2024 11:44
Letzte Änderung:17 Sep 2024 11:44

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.