Barklage, Alexander und Reimer, Lars und Bekemeyer, Philipp (2024) Outlier Detection for Distributed Pressure Measurements. In: AIAA Aviation Forum and ASCEND, 2024. Outlier Detection for Distributed Pressure Measurements, 2024-07-29 - 2024-08-02, Las Vegas, Nevada. doi: 10.2514/6.2024-4333. ISBN 978-162410716-0.
PDF
- Nur DLR-intern zugänglich
2MB |
Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2024-4333
Kurzfassung
In aerodynamic modeling, wind tunnel and flight tests are usually assumed to be the ground truth for validating and calibrating physical or data-driven models. However, the measurements, such as pressure data, can contain several outliers, which can deteriorate the calibrated models. So far, outliers have been identified by visually inspecting the data, which can be time-consuming. Hence, it is desirable to automatically detect outliers during testing to exclude them from live monitoring, identify leakages in the pressure tubing, and obtain reliable datasets for calibration involving minimal manual interaction. This work introduces two methods for this task with semi-supervised anomaly detection approaches using simulation data for learning the normal behavior. The first method is based on a proper orthogonal decomposition of the training data, while the second relies on a variational autoencoder. These methods are applied to wind tunnel tests of a two-dimensional airfoil and the NASA common research model. Both methods successfully detect outliers, while the proper orthogonal decomposition based method better classifies them. However, the methods misclassify measurement points where RANS features systematic errors thus illustrating the necessity of accurate simulations for outlier detection.
elib-URL des Eintrags: | https://elib.dlr.de/205826/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Outlier Detection for Distributed Pressure Measurements | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Erschienen in: | AIAA Aviation Forum and ASCEND, 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.2514/6.2024-4333 | ||||||||||||||||
ISBN: | 978-162410716-0 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Anomaly detection, Computational Fluid Dynamics, Reduced order modeling | ||||||||||||||||
Veranstaltungstitel: | Outlier Detection for Distributed Pressure Measurements | ||||||||||||||||
Veranstaltungsort: | Las Vegas, Nevada | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 29 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 2 August 2024 | ||||||||||||||||
Veranstalter : | American Institute of Aeronautics and Astronautics, Inc. | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Digitale Technologien | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > CASE, BS | ||||||||||||||||
Hinterlegt von: | Barklage, Alexander | ||||||||||||||||
Hinterlegt am: | 16 Okt 2024 10:04 | ||||||||||||||||
Letzte Änderung: | 16 Okt 2024 10:04 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags