elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Applying Sublook Diversity: A New Self-Supervised Deep Learning Method for SAR Image Despeckling

Parra-Parra, Dayana (2024) Applying Sublook Diversity: A New Self-Supervised Deep Learning Method for SAR Image Despeckling. Masterarbeit, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav).

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Synthetic Aperture Radar (SAR) imaging is a pivotal technology in remote sensing, offering the ability to capture high-resolution data of the Earth's surface under any weather conditions and at all times. However, the quality of SAR images is often compromised by speckle noise, a granular interference that severely impacts the usability of the data for analysis and interpretation. Traditional despeckling methods often struggle to reduce noise without sacrificing image detail and resolution. This thesis introduces a new self-supervised deep learning approach, which is intended to improve the quality of SAR images by effectively reducing speckle noise while preserving resolution and finer image details. The proposed model for the reduction of speckle noise leverages the inherent sublook diversity in SAR images. By adopting the Noise2Noise training paradigm, the method trains directly on the noisy images without requiring clean ground truth data, thus circumventing one of the major limitations faced by previous despeckling approaches. The proposed model utilizes a custom U-Net architecture tailored to the specific characteristics of SAR data, optimizing it for both noise reduction and detail preservation. The performance of the proposed approach is quantitatively evaluated using metrics that allow us to compare the results of our method with other contemporary state-of-the-art methods, qualitative visual evaluations are also performed on a variety of SAR scenes, which demonstrate the effectiveness of our approach in reducing the speckle and preserve the resolution of the images.

elib-URL des Eintrags:https://elib.dlr.de/205723/
Dokumentart:Hochschulschrift (Masterarbeit)
Titel:Applying Sublook Diversity: A New Self-Supervised Deep Learning Method for SAR Image Despeckling
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Parra-Parra, Dayanadayana.parra (at) cinvestav.mxNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:14 August 2024
Open Access:Nein
Status:veröffentlicht
Stichwörter:machine learning (ML), supervised learning, synthetic aperture radar (SAR), despeckling
Institution:Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav)
Abteilung:Telecomunicaciones
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Flugzeug-SAR
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Hochfrequenztechnik und Radarsysteme
Hinterlegt von: Amao Oliva, Joel Alfredo
Hinterlegt am:12 Aug 2024 15:43
Letzte Änderung:04 Dez 2024 16:57

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.