elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4

Martin, Anna und Gayler, Veronika und Steil, Benedikt und Klingmüller, Klaus und Jöckel, Patrick und Tost, Holger und Lelieveld, Jos und Pozzer, Andrea (2024) Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4. Geoscientific Model Development, 17 (14), Seiten 5705-5732. Copernicus Publications. doi: 10.5194/gmd-17-5705-2024. ISSN 1991-959X.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
12MB

Offizielle URL: https://gmd.copernicus.org/articles/17/5705/2024/

Kurzfassung

We present the coupling of the Jena Scheme for Biosphere–Atmosphere Coupling in Hamburg version 4 (JSBACHv4) to the ECHAM/MESSy Atmospheric Chemistry (EMAC) model. With JSBACH, the soil water bucket model in EMAC is replaced by a diffusive hydrological transport model for soil water that includes water storage and infiltration in five soil layers, preventing soil from drying too rapidly and reducing biases in soil temperature and moisture. A three-layer soil scheme is implemented, and phase changes in water in the soil are considered. The leaf area index (LAI) climatology in EMAC has been substituted with a phenology module calculating the LAI. Multiple land cover types are included to provide a state-dependent surface albedo, which accounts for the absorption of solar radiation by vegetation. Plant net primary productivity, leaf area index and surface roughness are calculated according to the plant functional types. This paper provides a detailed evaluation of the new coupled model based on observations and reanalysis data, including ERA5/ERA5-Land datasets, Global Precipitation Climatology Project (GPCP) data and Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data. Land surface temperature (LST), terrestrial water storage (TWS), surface albedo (α), net top-of-atmosphere radiation flux (RadTOA), precipitation (precip), leaf area index (LAI), fraction of absorbed photosynthetic active radiation (FAPAR) and gross primary productivity (GPP) are evaluated in particular. The strongest correlation (r) between reanalysis data and the newly coupled model is found for LST (r=0.985, with an average global bias of −1.546 K), α (r=0.947, with an average global bias of −0.015) and RadTOA (r=0.907, with an average global bias of 3.56 W m−2). Precipitation exhibits a correlation with the GPCP dataset of 0.523 and an average global bias of 0.042 mm d−1. The LAI optimisation yields a correlation of 0.637 with observations and a global mean deviation of −0.212. FAPAR and GPP exemplify two of the many additional variables made available through JSBACH in EMAC. FAPAR and observations show a correlation of 0.663, with an average global difference of −0.223, while the correlation for GPP and observations is 0.564 and the average global difference is −0.001 kg carbon km−1. Benefiting from the numerous added features within the simulated land system, the representation of soil moisture is improved, which is critical for vegetation modelling. This improvement can be attributed to a general increase in soil moisture and water storage in deeper soil layers and a closer alignment of simulated TWS with observations, mitigating the previously widespread problem of soil drought. We show that the numerous newly added components strongly improve the land surface, e.g. soil moisture, TWS and LAI, while surface parameters, such as LST, surface albedo or RadTOA, which were mostly prescribed according to climatologies, remain similar. The coupling of JSBACH brings EMAC a step closer towards a holistic comprehensive Earth system model and extends its versatility.

elib-URL des Eintrags:https://elib.dlr.de/205610/
Dokumentart:Zeitschriftenbeitrag
Titel:Evaluation of the coupling of EMACv2.55 to the land surface and vegetation model JSBACHv4
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Martin, AnnaMax Planck Institute for Chemistry, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Gayler, VeronikaMax Planck Institute for Meteorology, HamburgNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Steil, BenediktMax Planck Institute for Chemistry, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Klingmüller, KlausMax Planck Institute for Chemistry, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jöckel, PatrickDLR, IPAhttps://orcid.org/0000-0002-8964-1394NICHT SPEZIFIZIERT
Tost, HolgerUniverisität Mainz, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Lelieveld, JosMax Planck Institute for Chemistry, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Pozzer, AndreaMax Planck Institute for Chemistry, MainzNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:30 Juli 2024
Erschienen in:Geoscientific Model Development
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:17
DOI:10.5194/gmd-17-5705-2024
Seitenbereich:Seiten 5705-5732
Verlag:Copernicus Publications
ISSN:1991-959X
Status:veröffentlicht
Stichwörter:EMAC, climate model, MESSy, Modular Earth Submodel System, land surface model, JSBACH, soil, vegetation
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Atmosphären- und Klimaforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Physik der Atmosphäre > Erdsystem-Modellierung
Hinterlegt von: Jöckel, Dr. Patrick
Hinterlegt am:01 Aug 2024 07:06
Letzte Änderung:01 Aug 2024 13:14

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.