elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Oil Spill Monitoring in the Gulf of Mexico based on Deep Learning using Spaceborne SAR Imagery from the European Copernicus Mission

Schnupfhagn, Christoph und Yang, Yi-Jie (2024) Oil Spill Monitoring in the Gulf of Mexico based on Deep Learning using Spaceborne SAR Imagery from the European Copernicus Mission. AGU24, 2024-12-09 - 2024-12-13, Washington D.C., USA.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Offizielle URL: https://agu.confex.com/agu/agu24/meetingapp.cgi/Paper/1540305

Kurzfassung

Due to its large oil reserves and heavy shipping traffic, the Gulf of Mexico is subject to oil pollution from both anthropogenic spills and natural seeps. In this contribution, we present an oil spill monitoring system for the Gulf of Mexico based on synthetic aperture radar (SAR) imagery from the European Copernicus satellite Sentinel-1. Oil slicks are identified using a state-of-the-art deep learning-based object detector, which was custom-trained with manually labeled SAR image patches from the northern Gulf of Mexico, including oil slicks and typical other atmospheric and oceanic phenomena. Labeling was supported by contextual information such as wind speed, chlorophyll-a concentration and sea surface temperature. An additional dataset of labeled SAR images from a full year, covering all seasons, was then used to validate the detector. Finally, each detected oil spill is segmented to provide the actual extent of the polluted area. We present an evaluation of the detector performance and a method to reduce false alarms using local image statistics. Starting from individual SAR scenes, our monitoring system automatically generates geocoded binary masks of the detected oil spills. The method is optimized for speed and accuracy and can be adapted to upcoming SAR missions. With its potential for operational use, our oil spill monitoring system can serve as a basis for decision makers and early response.

elib-URL des Eintrags:https://elib.dlr.de/205472/
Dokumentart:Konferenzbeitrag (Poster)
Zusätzliche Informationen:conference: https://www.agu.org/annual-meeting
Titel:Oil Spill Monitoring in the Gulf of Mexico based on Deep Learning using Spaceborne SAR Imagery from the European Copernicus Mission
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schnupfhagn, Christophchristoph.schnupfhagn (at) dlr.dehttps://orcid.org/0009-0009-3660-9727NICHT SPEZIFIZIERT
Yang, Yi-JieYi-Jie.Yang (at) dlr.de / CAU Kiel, Germanyhttps://orcid.org/0000-0002-4098-8119NICHT SPEZIFIZIERT
Datum:11 Dezember 2024
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:akzeptierter Beitrag
Stichwörter:Oceanography, SAR, oil pollution, Gulf of Mexico, near real-time oil spill detection, NRT, deep learning
Veranstaltungstitel:AGU24
Veranstaltungsort:Washington D.C., USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 Dezember 2024
Veranstaltungsende:13 Dezember 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:16 Okt 2024 14:43
Letzte Änderung:16 Okt 2024 14:43

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.