Steinhoff, Leon und Koschlik, Ann-Kathrin und Arts, Emy und Soria Gomez, Maria und Raddatz, Florian und Kunz, Veit Dominik (2024) Development of an Acoustic Fault Diagnosis System for UAV Propeller Blades. CEAS Aeronautical Journal, 1 - 13. Springer. doi: 10.1007/s13272-024-00752-8. ISSN 1869-5590.
PDF
- Verlagsversion (veröffentlichte Fassung)
1MB |
Offizielle URL: https://doi.org/10.1007/s13272-024-00752-8
Kurzfassung
With the rapid growth in demand for unmanned aerial vehicles (UAVs), novel maintenance technologies are essential for ensuring automatic, safe, and reliable operations. This study compares two fault detection systems that utilize the acoustic signature of UAV propeller blades for classifying their health state. By employing an acoustic camera with 112 microphones for spatial resolution of sound sources, datasets of acoustic images are generated in three differently reverberating environments for the third octave frequency bands of 6300 Hz, 8000 Hz, 10000 Hz and 12500 Hz. A convolutional neural network (CNN) is trained and evaluated with maximum F1-scores of 0.9962 and 0.9745 for two and three propeller health classes, respectively. Furthermore, we propose a second approach based on a linear classification (LC), which utilizes a rotating beamformer for comparison. This approach uses only two sound sources that are identified after the acoustic beamforming of a two-bladed propeller. In comparison, this algorithm detects propeller tip damages without applying a machine learning algorithm and reaches a slightly lower F1-score of 0.9441.
elib-URL des Eintrags: | https://elib.dlr.de/205447/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | Published online: 12 July 2024; Electronic ISSN: 1869-5590; Print ISSN: 1869-5582 | ||||||||||||||||||||||||||||
Titel: | Development of an Acoustic Fault Diagnosis System for UAV Propeller Blades | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 12 Juli 2024 | ||||||||||||||||||||||||||||
Erschienen in: | CEAS Aeronautical Journal | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||||||
DOI: | 10.1007/s13272-024-00752-8 | ||||||||||||||||||||||||||||
Seitenbereich: | 1 - 13 | ||||||||||||||||||||||||||||
Verlag: | Springer | ||||||||||||||||||||||||||||
Name der Reihe: | Springer Link | ||||||||||||||||||||||||||||
ISSN: | 1869-5590 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | UAV Maintenance; Machine Condition Monitoring; Acoustic Diagnosis; Non-Destructive Testing; Machine Learning | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | L EV - Effizientes Luftfahrzeug | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Virtuelles Flugzeug und Validierung | ||||||||||||||||||||||||||||
Standort: | Göttingen , Hamburg | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Aerodynamik und Strömungstechnik > Experimentelle Verfahren, GO Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung | ||||||||||||||||||||||||||||
Hinterlegt von: | Micknaus, Ilka | ||||||||||||||||||||||||||||
Hinterlegt am: | 24 Jul 2024 16:47 | ||||||||||||||||||||||||||||
Letzte Änderung: | 25 Jul 2024 10:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags