Kornfeld, Nils und Leich, Andreas und Roth, Michael (2024) Kalman filtering aspects in camera and deep learning based tracking for traffic monitoring. In: 27th International Conference on Information Fusion, FUSION 2024, Seiten 1-8. 27th International Conference on Information Fusion, 2024-07-07 - 2024-07-12, Venedig, Italien. doi: 10.23919/FUSION59988.2024.10706402. ISBN 978-173774976-9. ISSN 2707-8779.
PDF
2MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10706402
Kurzfassung
In multiple object tracking applications for traffic monitoring the underlying algorithms often use rectangular, axis-aligned bounding boxes from deep-learning based object detection systems as a measurement input. Often the association of the measurements to trajectories is performed in the image domain, where after for every bounding box an already associated pseudo-measurement in a world coordinate system is estimated, which is finally used as a measurement input to a Kalman Filter. In contrast to this approach this article examines a multiple object tracking system with a measurement model which maps the estimated state of objects in world coordinates to the aforementioned rectangular bounding boxes in an image coordinate system. In addition the choice of the state vector elements modelled to represent the vehicles is shown and discussed. The approach presented in this article allows for association founded in physical reality, the estimation of the spacial dimensions of tracked objects and avoids shortcomings of a two-staged approach with association in the image coordinate frame.
elib-URL des Eintrags: | https://elib.dlr.de/205301/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Titel: | Kalman filtering aspects in camera and deep learning based tracking for traffic monitoring | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Juli 2024 | ||||||||||||||||
Erschienen in: | 27th International Conference on Information Fusion, FUSION 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
DOI: | 10.23919/FUSION59988.2024.10706402 | ||||||||||||||||
Seitenbereich: | Seiten 1-8 | ||||||||||||||||
ISSN: | 2707-8779 | ||||||||||||||||
ISBN: | 978-173774976-9 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | Kalman filters, state estimation, deep learning, traffic monitoring, measurement model | ||||||||||||||||
Veranstaltungstitel: | 27th International Conference on Information Fusion | ||||||||||||||||
Veranstaltungsort: | Venedig, Italien | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 7 Juli 2024 | ||||||||||||||||
Veranstaltungsende: | 12 Juli 2024 | ||||||||||||||||
Veranstalter : | International Society of Information Fusion (ISIF) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | Straßenverkehr | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V ST Straßenverkehr | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - KoKoVI - Koordinierter kooperativer Verkehr mit verteilter, lernender Intelligenz | ||||||||||||||||
Standort: | Braunschweig | ||||||||||||||||
Institute & Einrichtungen: | Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BS Institut für Verkehrssystemtechnik > Informationsgewinnung und Modellierung, BA | ||||||||||||||||
Hinterlegt von: | Kornfeld, Nils | ||||||||||||||||
Hinterlegt am: | 02 Dez 2024 07:36 | ||||||||||||||||
Letzte Änderung: | 02 Dez 2024 07:38 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags