Sandberg, Johannes and Voigtmann, Thomas and Devijver, Emilie and Jakse, Noel (2024) Feature selection for high-dimensional neural network potentials with the adaptive group lasso. Machine Learning: Science and Technology, 5, 025043. Institute of Physics Publishing. doi: 10.1088/2632-2153/ad450e. ISSN 2632-2153.
PDF
- Published version
1MB |
Abstract
Neural network potentials are a powerful tool for atomistic simulations, allowing to accurately reproduce ab initio potential energy surfaces with computational performance approaching classical force fields. A central component of such potentials is the transformation of atomic positions into a set of atomic features in a most efficient and informative way. In this work, a feature selection method is introduced for high dimensional neural network potentials, based on the adaptive group lasso (AGL) approach. It is shown that the use of an embedded method, taking into account the interplay between features and their action in the estimator, is necessary to optimize the number of features. The method's efficiency is tested on three different monoatomic systems, including Lennard–Jones as a simple test case, Aluminium as a system characterized by predominantly radial interactions, and Boron as representative of a system with strongly directional components in the interactions. The AGL is compared with unsupervised filter methods and found to perform consistently better in reducing the number of features needed to reproduce the reference simulation data at a similar level of accuracy as the starting feature set. In particular, our results show the importance of taking into account model predictions in feature selection for interatomic potentials.
Item URL in elib: | https://elib.dlr.de/205208/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||||||||||
Title: | Feature selection for high-dimensional neural network potentials with the adaptive group lasso | ||||||||||||||||||||
Authors: |
| ||||||||||||||||||||
Date: | 2024 | ||||||||||||||||||||
Journal or Publication Title: | Machine Learning: Science and Technology | ||||||||||||||||||||
Refereed publication: | Yes | ||||||||||||||||||||
Open Access: | Yes | ||||||||||||||||||||
Gold Open Access: | Yes | ||||||||||||||||||||
In SCOPUS: | Yes | ||||||||||||||||||||
In ISI Web of Science: | Yes | ||||||||||||||||||||
Volume: | 5 | ||||||||||||||||||||
DOI: | 10.1088/2632-2153/ad450e | ||||||||||||||||||||
Page Range: | 025043 | ||||||||||||||||||||
Publisher: | Institute of Physics Publishing | ||||||||||||||||||||
ISSN: | 2632-2153 | ||||||||||||||||||||
Status: | Published | ||||||||||||||||||||
Keywords: | machine learning; neural networks; molecular dynamics simulations; feature selection; adaptive group lasso | ||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||
HGF - Program Themes: | Research under Space Conditions | ||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||
DLR - Program: | R FR - Research under Space Conditions | ||||||||||||||||||||
DLR - Research theme (Project): | R - Material Design and New Materials | ||||||||||||||||||||
Location: | Köln-Porz | ||||||||||||||||||||
Institutes and Institutions: | Institute of Materials Physics in Space | ||||||||||||||||||||
Deposited By: | Voigtmann, Dr.rer.nat. Thomas | ||||||||||||||||||||
Deposited On: | 15 Jul 2024 10:35 | ||||||||||||||||||||
Last Modified: | 15 Jul 2024 10:35 |
Repository Staff Only: item control page