Pulella, Andrea und Prats, Pau und Sica, Francescopaolo (2024) Multitask Learning for Phase Source Separation in InSAR Burst Modes. IEEE Transactions on Geoscience and Remote Sensing, 62, Seiten 1-21. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/TGRS.2024.3401775. ISSN 0196-2892.
PDF
- Postprintversion (akzeptierte Manuskriptversion)
27MB |
Offizielle URL: https://ieeexplore.ieee.org/document/10531770
Kurzfassung
The ScanSAR and Terrain Observation by Progressive Scans (TOPS) burst acquisition modes are nowadays among the most widely used in SAR satellite missions. Both allow for an increased coverage at the expense of azimuth resolution. However, the intermittent nature of the burst acquisition results in an increased sensitivity towards burst edges to displacements in the along-track dimension. In the presence of azimuth motion in the scene, phase jumps between bursts occur. In this contribution, this increased sensitivity is considered as an opportunity to obtain information on the North-South displacement, to which current SAR systems are less sensitive due to their quasi-polar orbits. Specifically, we suggest the usage of a multi-task learning architecture trained in a supervised fashion to separate the phase contribution due to displacements in the zero-Doppler direction from along-track displacements, and to further provide a first rough estimation for the along-track displacement. Through an ad hoc network architecture and loss functions, we inject information about the interferometric SAR system model into the learning process, following a machine learning approach. We apply our method to the estimation of inland glacier flow from Sentinel-1 interferometric wide-swath data. We show that we are able to estimate, with excellent performance, along-track surface displacements of a few centimeters to several tens of centimeters, providing an improvement in accuracy compared to speckle tracking, and in coverage compared to techniques that exploit the burst-overlap differential phase.
elib-URL des Eintrags: | https://elib.dlr.de/205206/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||
Zusätzliche Informationen: | This is a preprint version. The page numbers do not correspond to those in the published version. | ||||||||||||||||
Titel: | Multitask Learning for Phase Source Separation in InSAR Burst Modes | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | Januar 2024 | ||||||||||||||||
Erschienen in: | IEEE Transactions on Geoscience and Remote Sensing | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||
Band: | 62 | ||||||||||||||||
DOI: | 10.1109/TGRS.2024.3401775 | ||||||||||||||||
Seitenbereich: | Seiten 1-21 | ||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||
ISSN: | 0196-2892 | ||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||
Stichwörter: | 2-D source separation, convolutional neural networks (CNNs), deep learning (DL), multitask learning (MTL), Sentinel-1, surface displacements, surface motion, synthetic aperture radar (SAR), synthetic aperture radar interferometry (InSAR), Terrain Observation by Progressive Scans (TOPSs) | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Flugzeug-SAR | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Hochfrequenztechnik und Radarsysteme Institut für Hochfrequenztechnik und Radarsysteme > SAR-Technologie | ||||||||||||||||
Hinterlegt von: | Pulella, M.Eng. Andrea | ||||||||||||||||
Hinterlegt am: | 09 Jul 2024 09:43 | ||||||||||||||||
Letzte Änderung: | 09 Jul 2024 09:43 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags