elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Forecasting 24-Hr Total Electron Content With Long Short-Term Memory Neural Network

Adolfs, Marjolijn und Hoque, Mohammed Mainul und Shprits, Yuri (2024) Forecasting 24-Hr Total Electron Content With Long Short-Term Memory Neural Network. Journal of Geophysical Research: Machine Learning and Computation, 1 (2), e2024JH000123. Wiley. doi: 10.1029/2024JH000123. ISSN 2993-5210.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Kurzfassung

An accurate prediction of the ionospheric state is important for correcting ionospheric propagation effects on Global Navigation Satellite Systems (GNSS) signals used in precise navigation and positioning applications. The main objective of the present work is to find a total electron content (TEC) model which gives a good estimate of ionospheric state not only during quiet but also during perturbed ionospheric conditions. For this, we implemented several long short-term memory (LSTM)-based models capable of predicting TEC up to 24 hr ahead. For the first time, we used the solar wind forcing parameters Wprot (a measure of the ionospheric disturbance during storm time) and Econv (measure of the solar wind parameters) as driver parameters. We found that using external drivers does not improve the accuracy of TEC predictions significantly. The final model is trained with data from the last two solar cycles using TEC from the rapid UQRG global ionosphere maps (GIMs). Data from the years 2015 and 2020 were excluded from the training data set and used for testing. The performance of the LSTM-based TEC model is tested for near real-time (RT) cases as well by using RT products (IRTG GIMs) as historical TEC inputs. We compared the performance of the LSTM-based model to a quiet-time feed forward neural network (FNN)-based model and the Neustrelitz TEC model (NTCM). The results indicate that the LSTM-based model proposed here is outperforming the FNN-based model and NTCM in both cases, that is, using the UQRG or the IRTG GIMs as input for the historical TEC.

elib-URL des Eintrags:https://elib.dlr.de/205139/
Dokumentart:Zeitschriftenbeitrag
Titel:Forecasting 24-Hr Total Electron Content With Long Short-Term Memory Neural Network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Adolfs, MarjolijnMarjolijn.Adolfs (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hoque, Mohammed MainulMainul.Hoque (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Shprits, Yuriyuri.shprits (at) gfz-potsdam.dehttps://orcid.org/0000-0002-9625-0834NICHT SPEZIFIZIERT
Datum:16 Mai 2024
Erschienen in:Journal of Geophysical Research: Machine Learning and Computation
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Band:1
DOI:10.1029/2024JH000123
Seitenbereich:e2024JH000123
Verlag:Wiley
ISSN:2993-5210
Status:veröffentlicht
Stichwörter:ionosphere; total electron content; geomagnetic storms; neural networks; NTCM; LSTM
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Solar-Terrestrische Physik SO
Standort: Neustrelitz
Institute & Einrichtungen:Institut für Solar-Terrestrische Physik > Weltraumwetterbeobachtung
Hinterlegt von: Adolfs, Marjolijn
Hinterlegt am:30 Sep 2024 09:50
Letzte Änderung:02 Okt 2024 11:54

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.