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Abstract An accurate prediction of the ionospheric state is important for correcting ionospheric propagation
effects on Global Navigation Satellite Systems (GNSS) signals used in precise navigation and positioning
applications. Themain objective of the present work is to find a total electron content (TEC)model which gives a
good estimate of ionospheric state not only during quiet but also during perturbed ionospheric conditions. For
this, we implemented several long short‐term memory (LSTM)‐based models capable of predicting TEC up to
24 hr ahead. For the first time, we used the solar wind forcing parametersWprot (a measure of the ionospheric
disturbance during storm time) and Econv (measure of the solar wind parameters) as driver parameters. We found
that using external drivers does not improve the accuracy of TEC predictions significantly. The final model is
trainedwith data from the last two solar cycles using TEC from the rapid UQRGglobal ionospheremaps (GIMs).
Data from the years 2015 and 2020were excluded from the training data set and used for testing. The performance
of the LSTM‐based TECmodel is tested for near real‐time (RT) cases as well by usingRT products (IRTGGIMs)
as historical TEC inputs. We compared the performance of the LSTM‐based model to a quiet‐time feed forward
neural network (FNN)‐basedmodel and theNeustrelitz TECmodel (NTCM). The results indicate that the LSTM‐
based model proposed here is outperforming the FNN‐based model and NTCM in both cases, that is, using the
UQRG or the IRTG GIMs as input for the historical TEC.

Plain Language Summary Knowledge of the ionospheric state is important for correcting
ionospheric propagation effects on Global Navigation Satellite Systems (GNSS) signals used in precise
navigation and positioning applications. The ionospheric state can be described by the total electron content
(TEC). Here we propose a model that uses only the 3‐day historical TEC, day of year, universal time, geographic
longitude and latitude as input parameters and no other external drivers. The performance of the model has been
analyzed for quiet and perturbed ionospheric conditions. The performance of the model is also tested for near
real‐time (RT) cases using the RT products from the International GNSS Service as an input for the
historical TEC.

1. Introduction
The ionosphere is an atmospheric layer which contains ionized particles, where ionization is mainly caused by
solar radiation (Davies, 1990, p. 33). The state of the ionosphere is constantly varying due to space weather
conditions. The ionosphere reacts to solar activity and geomagnetic storms (Lilensten, 2007, p. 125) and it's
activity can be described by the total electron content (TEC) (Cherrier et al., 2017). The TEC is the line‐of‐sight
number of free electrons and is given in TEC units (TECU), where one TECU stands for 1016 free electrons per
square meter. Radio signals broadcasted by the Global Navigation Satellite System (GNSS) propagating through
the ionosphere are affected by the free electrons, resulting in a delay (or advance) in the signal. One way to correct
for this ionospheric effect is to use its dispersive property and combine multiple frequencies but this technique
cannot be applied for single frequency users; instead, ionospheric models can be used. Single frequency receivers
are still most commonly used in the mass market, aviation and automotive industry may be due to lower costs,
power consumption and complexity. Therefore, it is important to utilize models that can correct for this propa-
gation delay. Ionospheric models like Klobuchar (Klobuchar, 1987), NeQuick (Nava et al., 2008) or the Neu-
strelitz TECmodel (NTCM) (Hoque et al., 2017, 2018, 2019; Hoque & Jakowski, 2015; Jakowski et al., 2011) can
be used in order to predict the TEC. There are different kind of TEC models available, for example, broadcast or
empirical models (listed above), physics‐based‐ (e.g., Thermosphere‐Ionosphere‐Electrodynamics General
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Circulation Model‐TIE‐GCM, Coupled Thermosphere Ionosphere Plasmasphere Electrodynamics Model‐
CTIPe) or neural network (NN)‐based models. A lot of studies (Adolfs & Hoque, 2021; Chen et al., 2022;
Cherrier et al., 2017; Chimsuwan et al., 2021; Li et al., 2023; Lin et al., 2022; Natras et al., 2022; Orus
Perez, 2019; Sun et al., 2017; Tang et al., 2022; Xiong et al., 2021; Zewdie et al., 2021) have been applying
different machine learning techniques for ionospheric TEC predictions. A few examples of the investigated ar-
chitectures are feed forward neural networks (FNN) (Adolfs & Hoque, 2021; Orus Perez, 2019), long short‐term
memory (LSTM) (Chen et al., 2022; Chimsuwan et al., 2021; Sun et al., 2017; Zewdie et al., 2021) or different
combinations, for example, convolutional neural network (CNN)‐LSTM (Cherrier et al., 2017), CNN‐LSTM‐
attention mechanism (Tang et al., 2022), encoder‐decoder (ED)‐LSTM extended (Xiong et al., 2021), ED‐
Convolutional LSTM (Li et al., 2023), decision trees and ensemble learning of tree‐based learning algorithms
(Natras et al., 2022). Not only the architectures are different for the individual models but also the prediction
horizon, which can range from a few hours ahead up to multiple days, the region and the number of parameters
that drive the models. The period covered by the studies is also varying. The NN‐based model proposed here
should make global predictions up to 24 hr ahead. Since geomagnetic storms can cause hugely disturbed TEC
values, it is very important that the performance of ionospheric models is stable during these perturbed periods. A
moderate storm event can be identified when the disturbance index Dst dropped below − 50 nano tesla (nT)
(Gonzalez et al., 1994). Our previous investigations in Adolfs et al. (2022) showed that the proposed storm‐time
model had a different performance for the individual storms. This indicates that the storms can be very different
from each other. During the investigations only moderate and stronger storms were considered (Dst < − 50 nT).
Storms can be driven by coronal mass ejections (CMEs) or by high‐speed solar‐wind streams (HSS) which cause
corotating interaction regions (CIRs). CMEs have a higher occurrence rate during the solar maximum with an
irregular occurrence pattern, associated stronger Dst and sometimes a period of unusually calm geomagnetic
activity before the storm whereas CIR driven storms have a higher occurrence rate during the declining phase of
the solar cycle, a 27‐day repeating occurrence pattern, weaker Dst and more frequently a calm before the storm
(Borovsky & Denton, 2006). Our previous work (Adolfs et al., 2022; Adolfs & Hoque, 2021) was focussed on the
FNN but this work focusses on using a different architecture, namely the LSTM. The LSTM architecture is known
for its ability to perform well in time series forecasting because of its effective handling of long time lag tasks and
can remember information for a long period of time. Therefore, this capability is exploited in TEC forecasting and
the advantage of using this architecture over a traditional FNN architecture is investigated. Some of the models
mentioned above, use geomagnetic indices and solar wind parameters to drive their models. Therefore, the
advantage of including them is also investigated in this paper. The model is trained with global ionosphere maps
(GIMs) from the Universitat Politècnica de Catalunya (UPC) international GNSS service (IGS) analysis center,
that is, the UPC Quarter‐of‐an‐hour time resolution Rapid GIMs (UQRG). The solar wind parameters are ob-
tained from the OMNIWeb interface. Since the behavior of TEC during storms can be very different, it is
important that data from the previous two solar cycles are included, so that the network can see more storms. The
model's near real‐time performance is investigated as well. Investigations about the delay in ionospheric response
to solar parameters are out of scope but can be performed in the future. Even though the LSTM architecture is
known for its effective handling of longer time lags, an improvement in performance may be achieved when this
more accounted for.

Figure 1. The solar flux index F10.7 plotted together with the training, validation and testing data set.
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The paper is divided into different sections, where the first section includes a literature study about previous
neural networks and a brief introduction to our proposed model as described above. Section 2 explains how the
data is used to generate a database for training the neural network. The Methods section provides information
about the LSTM architecture, hyperparameter tuning and feature selection. In Section 4, the results of the pro-
posed model are analyzed and compared to existing models. The results are also shown for near real‐time ap-
plications. In the last section we provide a short summary and conclusion (Section 5).

2. Data
The LSTMmodel is trained with TEC data from rapid UQRGGIMs using data from the previous two solar cycles
(1998–2020), shown in Figure 1. The division into training, validation and testing data sets is shown in this figure
as well, more information about the data division is given in Section 3 below.

The UQRG GIMs have been downloaded from ftp://newg1.upc.es/upc_ionex/ (accessed on 8 May 2022). Newer
data (from the year 2022) was downloaded from the Crustal Dynamics Data Information System (CDDIS),
available at https://cddis.nasa.gov/archive/gnss/ionex/ (accessed 10 March 2023). Since the correctness of the
input data was out of scope in these investigations it may be beneficial to have a closer look at the accuracy of
GIMs and perhaps including other techniques proposed in Chen et al. (2023) in the future. The rapid UQRGGIMs
contain global TECmaps with a 5° × 2.5° resolution of longitude and latitude, respectively. The TECmaps have a
15‐min temporal resolution. To reduce the amount of data, the time resolution has been linearly interpolated to an
hourly time resolution. Using hourly data reduces the computational complexity and therefore speeds up pre-
processing and the training process. The geomagnetic storm indices such as Hp30 and SYM‐H are downloaded
from https://www.gfz‐potsdam.de/en/hpo‐index/ (accessed on 11March 2023) and http://wdc.kugi.kyoto‐u.ac.jp/
aeasy/index.html (accessed on 10 March 2023), respectively. Again, we interpolated to an hourly time resolution
for Hp30 and SYM‐H. The solar flux index F10.7, the interplanetary magnetic field components Bx, By, and Bz,
the solar wind bulk flow speed vsw, the bulk flow latitude and longitude Latsw, Lonsw and the proton density ρprot,
with a time resolution of 1 hr, were downloaded from the OMNIWeb interface, available at https://omniweb.gsfc.
nasa.gov/form/dx1.html (accessed 28 July 2023). The use of indices such as Hp30, SYM‐H or F10.7 is common

Figure 2. Sliding window technique using 72 hr of historic input data.

Figure 3. The general architecture of a long short‐term memory (LSTM) cell together with the forget, input and output gate.
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but in this study the use of other parameters such as the Econv and Wprot is
investigated as well. The proton energy (Wprot) describes how deep the solar
wind particles can penetrate in the atmosphere, causing ionization at lower
layers. During storms, Wprot would become larger meaning the particles can
penetrate deeper in the atmosphere and ionization levels are higher at lower
layers. The Dst however, will show stronger negative Dst values due to the
depression of the horizontal component of the magnetic field. Therefore, we
use the Wprot as a substitute for Dst in order to use the solar wind parameters
directly. The magnitude of the convection electric field (Econv) can be used as
a direct measure of the solar wind parameters, describing the coupling be-
tween the solar wind and the magnetosphere. The parameters can be defined
by Kamal et al. (2020), for example,:

Econv = |E⃗conv| = | − v⃗sw × B⃗sw| (1)

v⃗sw = vsw ⋅
⎧⎪⎪⎨

⎪⎪⎩

− cos(Latsw) ⋅ cos(Lonsw)

cos(Latsw) ⋅ sin(Lonsw)

sin(Latsw)

⎫⎪⎪⎬

⎪⎪⎭
(2)

Wprot =
1
2
⋅ ρprot ⋅ v2sw (3)

where vsw denotes the solar wind bulk flow speed, Bsw the interplanetary magnetic field vector, Latsw the bulk flow
latitude, Lonsw the bulk flow longitude and ρprot the proton density.

The sliding window technique has been chosen in order to make a supervised data set and the method is sche-
matically shown in Figure 2. A time window of 24 hr of historic data was tested and following the authors in
Cherrier et al. (2017), data with a time window of 72 hr was included in the investigations as well. Since the
supervised data set becomes very large, it was randomly sampled by taking 60% of the data in case of 24 hr of
historic input and in case of 72 hr by using 10%. During the testing phase, the model got tested with all the samples
(data during 2015 and 2020) in order to make fair comparisons. The input shape for an LSTM network is number
of samples, timesteps, features. The data has been reshaped to the needed input shape and saved as 3‐dimensional
Python NumPy arrays in a binary file.

3. Methods
3.1. LSTM Architecture

The LSTM is a kind of Recurrent Neural Network (RNN) but has overcome
issues like the exploding/vanishing gradient problem by using an appropriate
gradient based learning algorithm (Hochreiter & Schmidhuber, 1997). The
network can be implemented in Python using Tensorflow (Abadi et al., 2015)
and Keras (Chollet et al., 2015) libraries. To overcome the gradient problem,
the LSTM uses a forget, input and output gate which is schematically shown
in Figure 3. The forget gate contains a sigmoid function to determine how
much of the cell state C(t− 1) should be remembered by using the output of the
sigmoid, which is a value between 0 and 1 and multiply it to the cell state. If
the output of the sigmoid is 1, all the information is completely remembered
and when the output is 0, it completely forgets. The input gate is determining
how much of the input, multiplication of the output of tanh which is a value
between − 1 and 1 and the sigmoid which gives back a value between 0 and 1,
should be remembered by adding it to the cell state. Lastly there is the output
gate which controls the output ht by multiplying the cell state with the current
memory information using the samemethod as the input gate. The cell stateCt
and output of the cell ht, can be described by the following formulas:

Table 1
The Hyperparameters and the Range of Search Investigated During
Hyperparameter Tuning

Hyperparameter Range of search

Learning rate 0.001, 0.0001

Batch size 128, 256, 512

Activation function ReLU, tanh

Epochs 50, 100

Architectures 20, 50, 70, 100, 20–20, 50–20

Note. The selected hyperparameters are shown in bold.

Figure 4. The training and validation loss of the 72 hr input model with no
additional parameters, only the historic total electron content (TEC),
longitude, latitude, universal time (UT) and day of year (DOY) were used.
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Ct = Ct− 1 ∗ σ(Wf (ht− 1, xt) + bf ) + σ(Wi (ht− 1, xt) + bi) ∗ tanh(WC (ht− 1, xt) + bC) (4)

ht = σ(Wo (ht− 1, xt) + bo) ∗ tanh(Ct) (5)

Where Wf, bf, Wi, bi, Wo, bo, WC and bC stand for the weights and biases of the forget, input, output gate and
candidate values, respectively.

3.2. Hyperparameter Tuning and Feature Selection

For hyperparameter tuning and feature selection, data from the last solar cycle (2009–2020) was used. In order to
find the optimal set of hyperparameters the random grid search method was used, where different settings of the
network are randomly set and compared. The hyperparameters that were investigated are shown in Table 1. The
selected hyperparameters are shown in bold. The “Adam” optimization function (Kingma&Ba, 2014) is used and

Figure 5. The Pearson's correlation matrix for all data from the last solar cycle (left) and during storm days (right).

Figure 6. The feature importance from the random forest algorithm for all data (left plot) and storm days (right plot). The root
mean square error (RMSE) values are displayed in the right corner of the plots.
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the loss function is the mean absolute error (MAE). The use of the ReLU activation function did not improve the
results, therefore the default setting has been chosen which is the hyperbolic tangent (tanh). There was no sign of
overfitting, shown in Figure 4, therefore no regularization term or dropout was added.

To find the optimal set of input parameters, different feature selection techniques have been applied, that is,
training different models and comparing the training and validation loss and accuracy, random trees and Pearson's
correlation. The Pearson's correlation matrix indicates the linear relationship between the different parameters,
shown in Figure 5. Since the model should perform well during storm‐ and quiet‐time periods, a comparison
between the whole data set (left plot from Figure 5) and perturbed conditions (right plot from Figure 5) has been
made. From the correlation matrix a clear correlation (of 0.5) is seen between the solar flux index F10.7 and TEC.
There is also some correlation with Econv, Hp30 and SYM‐H. The other parameters do not show a very high
correlation. In the right plot of Figure 5 the Pearson's correlation is plotted separately for storm conditions, here
only a moderate correlation (of 0.4) with F10.7 is seen.

Using the random forest algorithm has the advantage of showing the feature importance and is a more automated
way compared to training multiple models and look at the loss and accuracy. The feature importance is computed
based on the Gini importance where the higher the value the more important the feature is. Authors in Zewdie
et al. (2021) also used the algorithm to find the top five of important parameters and included them into their
LSTM network. To implement the random forest algorithm, the Scikit‐Learn Python package is used (Pedregosa
et al., 2011). The maximum depth of the trees was set to 30. The accuracy of random forest regressors using less
tree depth was worse, but using a higher maximum depth would increase the training time significantly. To further
speed up the fitting process only 5% of the data from the last solar cycle (2010–2020) was randomly sampled and

Table 2
The Performance of the Proposed Models Trained on Data From the Last Solar Cycle

Model

Input 2015

Hours 1 6 12 24 Average

Base 24 1.9 (2.1) 3.6 (4.5) 3.9 (4.9) 3.9 (4.9) 3.7 (4.6)

Base + Econv 24 1.9 (2.1) 3.5 (4.3) 3.8 (4.7) 3.9 (4.7) 3.6 (4.4)

Base + Econv + Wprot 24 1.9 (2.1) 3.5 (4.3) 3.7 (4.6) 3.9 (4.6) 3.6 (4.3)

Base 72 1.8 (2.0) 3.5 (4.3) 3.8 (4.6) 3.9 (4.7) 3.4 (4.3)

Base + Econv 72 1.8 (2.0) 3.5 (4.1) 3.7 (4.4) 3.8 (4.5) 3.3 (4.1)

Base + Econv + Wprot 72 1.8 (2.1) 3.5 (4.2) 3.7 (4.5) 3.8 (4.5) 3.3 (4.2)

Base + SYM‐H + Hp30 + F10.7 72 1.8 (2.0) 3.3 (4.0) 3.6 (4.3) 3.7 (4.5) 3.2 (4.1)

Note. The RMSE values are computed for the test data set which comprises data from the high solar activity year 2015. The
value between the brackets is the RMSE during storm periods in the same year and the RMSE is given in TECU.

Table 3
The Performance of the Proposed Models Trained on Data From the Last Solar Cycle

Model

Input 2020

Hours 1 6 12 24 Average

Base 24 1.0 (1.1) 1.8 (2.1) 1.9 (2.1) 1.8 (1.9) 1.8 (2.0)

Base + Econv 24 1.0 (1.0) 1.7 (1.9) 1.8 (2.0) 1.8 (1.8) 1.7 (1.9)

Base + Econv + Wprot 24 1.0 (1.0) 1.7 (1.9) 1.8 (2.0) 1.8 (1.8) 1.7 (1.9)

Base 72 0.9 (0.9) 1.6 (1.7) 1.7 (1.7) 1.7 (1.6) 1.5 (1.6)

Base + Econv 72 0.9 (0.9) 1.6 (1.6) 1.6 (1.7) 1.7 (1.6) 1.5 (1.6)

Base + Econv + Wprot 72 0.9 (0.9) 1.6 (1.7) 1.6 (1.7) 1.7 (1.6) 1.5 (1.6)

Base + SYM‐H + Hp30 + F10.7 72 0.9 (0.9) 1.6 (1.6) 1.6 (1.6) 1.6 (1.6) 1.5 (1.5)

Note. The RMSE values are computed for the test data set which comprises data from the low solar activity year 2020. The
value between the brackets is the RMSE during storm periods in the same year and the RMSE is given in TECU.
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used for training and testing. We trained two models: one with data for the complete period and another model
containing data only during geomagnetic storm periods. The models are tested with independent data sets from
2015 and 2020 which are purposefully excluded from the training data set. The years 2015 and 2020 were chosen
due to their different solar activities, for example, 2015 is a year where high solar activity is seen and 2020 a low
solar activity year, respectively. The feature importance and the performance of the models (shown in the right
corner of the plots) are displayed in Figure 6. We found that the geographic latitude, longitude, solar flux index,
universal time (UT) and day of year (DOY) are the most important features in order to predict the TEC. The
Pearson's correlation matrix also showed a higher coefficient in case of the solar flux index. However, the latitude
is showing the highest importance for the storm days.

In order to compare the model's performance, a number of base models with common input features such as the
longitude, latitude, UT and DOYwere implemented. However, different combinations of historic TEC (past 1 day
or 3 days) data and external drivers were used as follows:

1. Base model with 1‐day historic TEC and no external drivers
2. Base model with 1‐day historic TEC and Econv and Wprot as additional drivers
3. Base model with 1‐day historic TEC and Econv as additional driver
4. Base model with 3‐day historic TEC and no external drivers
5. Base model with 3‐day historic TEC and additionally Econv and Wprot as drivers
6. Base model with 3‐day historic TEC and additionally Econv as driver
7. Base model with 3‐day historic TEC and additionally F10.7, SYM‐H and Hp30 as drivers

It is worthy to mention that the solar wind forcing parameters Econv andWprot can also be measured at L1 Lagrange
point and have the potential of predicting solar impact up to a few hours ahead. The main objective of the present
work is to find a model which gives a good performance not only during quiet ionospheric conditions but also
perturbed conditions. Therefore, the above models were tested using whole test data sets as well as a separate
storm data set from 2015 and 2020. The storm data set was created in our previous work in Adolfs et al. (2022) and
it contained almost 400 storms (storm event with Dst < − 50 nT are only considered) during the period 1998–
2020. The storm data set used for testing consists of a total of 33 storms that occurred during 2015 (27
storms) and 2020 (6 storms). The performance of the above mentioned trained models is analyzed in terms of
model residuals when comparing model values with the reference data from the UQRG GIMs. Tables 2 and 3
show that the models using 3‐day historic TEC data perform slightly better than those with 1‐day historic TEC
data in terms of RMSE (root mean squared error) during high and low solar activity years 2015 and 2020,
respectively. No significant improvement is found when using additional external driver parameters. We found
that the base model with 3‐day historic TEC data performs very similar to the models using external drivers.
Considering this, the base model using 3‐day historic TEC data is selected as an operational model for space
weather monitoring for further investigation. It is worthy to mention that this paper focuses on modeling using the
LSTM architecture, but the FNN architecture was also considered. Therefore, the performance of an FNN‐based

Figure 7. The LSTM‐based model RMSE values plotted against the leading time for all days and storm days in 2015 and
2020, respectively.
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model trained with the same input was compared to the network using the LSTM architecture. The LSTM‐based
model was outperforming the FNN‐based by approximately 0.2 TECU. Therefore, further modeling was
continued concentrating only on the LSTM architecture.

The selected model (with 3‐day historic TEC data and no external drivers) is trained with data from training cycle
one which comprises of data during 1998–2008 and then trained again with the data from training cycle two
(2009–2019, 2015 excluded). To avoid overfitting and reduce the training time, the early stopping method was
used during training of the final model. Early stopping means that the training procedure is stopped when the
validation loss has not gone down for a number of epochs. We used 100 epochs as the maximum number of
epochs and training is stopped if the validation loss is not decreasing within 10 epochs. The final model was
trained including the validation data set as well with 64 epochs during the first training cycle one and 62 during
training cycle two.

Figure 8. The global RMSE for the complete years (2015 and 2020) and during storm days.

Figure 9. The histograms of the residual errors in 2015. The left plot shows the residual errors for all days in 2015 and the
right plot during storm days in 2015 for the LSTM, quiet‐time Feed forward neural network (FNN) and Neustrelitz TEC
model (NTCM) predictions.
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4. Results
In this section the results of the final model are shown which is driven by the 3‐day historic TEC, longitude,
latitude, DOY and UT. The performance of the final LSTM‐based model is also compared to the FNN‐based
quiet‐time model proposed in Adolfs and Hoque (2021) and the NTCM. The NTCM is a computationally very
fast 12 coefficient model, driven by the F10.7 index and describes the TEC dependencies on local time,
geographic/geomagnetic location, and solar irradiance and activity. The diurnal, semi‐diurnal, and ter‐diurnal
harmonic components are describing the local time dependency. The two crests of increased ionization located
at both sides of the magnetic equator (equatorial anomalies) were modeled by Gaussian functions. The proposed
LSTM‐based model should also be compared to another NN‐based model and therefore we used the FNN‐based
quiet‐time model. This model is trained with hourly Carrington rotation averaged (approximately 27 days) data
from two solar cycles and is driven by the geographic longitude, geomagnetic latitude, UT, DOY, solar zenith
angle and the F10.7 index. This model was capable of reproducing the evolution of the small‐scale nighttime
winter anomaly.

In Figure 7, the variation of the RMSE as a function of forecasting time is plotted for both testing years (2015 and
2020). From this plot we can see that the model's performance is the best when the forecasting time is short. With
increasing forecasting time, the model's performance starts rapidly decreasing (i.e., RMSE increasing) until 5 hr
leading time. Then, the RMSE slowly increases and reaches up to about 3.8 TECU in case of 2015 and 1.7 TECU
in case of 2020 at 24 hr leading time. The average RMSE is found about 3.3 TECU and 1.5 TECU for (considering
all days) 2015 and 2020, respectively. During storm days the model is showing higher RMSE values in 2015
(average of 4.2 TECU). During 2020, the model shows a similar performance (RMSE of 1.6 TECU) when
considering only storm days and all days (RMSE of 1.5 TECU). The RMSE is even dropping after 15 hr fore-
casting time in case of the 2020 storm days which can be caused by the fading storm related perturbations as the
ionosphere returns to its quiet‐time state. However, more investigation is required to know the exact reason of
this. The variation in performance between quiet and storm conditions (in 2015) can partially be explained when
we compare the storms parameters, for example, Kp, F10.7 or Dst. Stronger negative values for Dst are seen

during storms that occurred in 2015, together with higher Kp and F10.7
values. The main difference between the storms occurring in 2015 and 2020,
is the solar activity. The year 2015 is a high solar activity period and 2020 is a
low solar activity year. The higher ionization levels together with a higher
number of storms during the high solar activity period can explain the dif-
ference in performance.

A similar behavior is seen in Figure 8, where the RMSE values are not
showing a large difference between 12 hr leading time and 24 hr of leading
time. The highest RMSE values are seen around the magnetic equator, where
the equatorial anomalies exist which is also seen in Chen et al. (2022). In
Figures 9 and 10, the histograms of the TEC differences (i.e., TECmodel—

Figure 10. The histograms of the residual errors in 2020. The left plot shows the residual errors for all days in 2020 and the
right plot during storm days in 2020 for the LSTM, quiet‐time FNN and NTCM predictions.

Table 4
The Mean and Standard Deviation of the Differences for the LSTM‐Based
Model, Quiet‐Time Feed Forward Neural Network (FNN)‐Based Model and
Neustrelitz TEC Model (NTCM) for all Days and Storm Days Shown in
Brackets

Model Mean 2015 Std 2015 Mean 2020 Std 2020

LSTM‐based model − 0.2 (− 0.1) 3.5 (4.3) − 0.1 (0.0) 1.6 (1.6)

FNN‐based model − 1.3 (− 0.8) 6.1 (6.6) − 0.1 (0.0) 2.7 (2.4)

NTCM − 1.4 (− 0.4) 7.4 (7.7) 0.8 (1.5) 3.6 (3.1)
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TECref) are plotted for the three models. The TEC differences of the LSTM‐based model are computed for all
predicted TEC values one up to 24 hr ahead, respectively. In Table 4 the mean and standard deviations of the
residuals are shown. The models are showing the worst performance during storm time in 2015. The difference
between the quiet and storm conditions is not found significant during the low solar activity year 2020. The
LSTM‐based model is always outperforming the FNN‐based model and NTCM.

4.1. Use of LSTM‐Based TEC Model for Space Weather Monitoring

In the previous section, UQRG GIMs have been used for training and validation of the network. These maps are
available with a 1‐day latency. For simulating near real‐time (RT) scenarios, GIMs with a smaller latency need to
be used. Therefore, the 3‐day historic input TEC data are obtained from http://chapman.upc.es/irtg/archive/2022/
(accessed 11 September 2023) which contain the IGS combined RT GIMs product, that is, IRTG. Authors in Liu
et al. (2021) found that the RT IRTG GIMs had a similar performance as the IGS rapid solutions (with 1 day
latency) and they could be a reliable source for global RT VTEC information. In Figure 11, the workflow used for
near real‐time application of the LSTM model is shown.

The model output is validated against the final combined solution from IGS (IGSG). These maps are independent
and the LSTM‐based model has never seen the data before. The model is tested for two storm days (DOY 104 and
105, 2022), two quiet days (DOY 154 and 155, 2022) and two quiet days 1 day after an M‐class solar flare (DOY
242 and 243, 2022). The maximum Kp and minimum Dst values for these days are shown in Table 5. The
performance, in terms of RMSE, mean and standard deviation of the differences (TECmodel—TECref), of the
LSTM‐based model is compared to the quiet‐time model and the NTCM. Both models use the solar flux index in
order to make predictions. The solar flux index is provided from the day before for the NTCM and FNN‐based
model, in order to have fairer RT comparisons. The model performance is shown in Table 5 and in Figure 12.
From the table and figure we can see that the LSTM‐based model is always outperforming the other two models
but the three models generally show a very similar pattern. The NTCM and quiet‐time NN model show in almost
all cases a larger bias, seen in Figure 12. The quiet‐time model is trained with Carrington rotation averaged

(approximately 27 days) CODE GIMs which can cause this bias (here IGS
combined maps are used as reference). Since both models are driven by the
solar flux index, it is expected that they give a higher TEC output when the
solar flux index increases, therefore the two models are sensitive to peaks in
the solar flux index. In case of the quiet days after a solar flare, the solar flux
index has higher values. Therefore, the FNN‐based and NTCM models are
overpredicting whereas the LSTM‐based model gives stable predictions. The
performance of the LSTM‐ and FNN‐based model during the quiet days is
very similar.

5. Summary and Conclusion
In this work a neural network (NN)‐based global total electron content (TEC)
model is proposed that makes predictions up to 24 hr ahead taking advantage
of the long short‐term memory (LSTM) architecture. The network was

Figure 11. Overview of near real‐time application of the LSTM model. Here the LSTM layers are described where the
number of neurons, in case of the LSTM and fully connected (FC) layer, are shown between the brackets.

Table 5
The RMSE in TEC Units (TECU) for the LSTM‐Based, the Quiet‐Time
FNN‐Based Model and the NTCM

DOY LSTM FNN NTCM Kp(max) Dst(min)

104 (Storm) 5.2 6.4 7.7 6 − 81

105 (Storm) 4.7 4.9 6.2 5 − 70

154 (Quiet) 2.2 2.6 4.9 1.3 − 8

155 (Quiet) 2.4 2.6 5.0 1 − 1

242 (Quiet after solar flare) 2.8 7.3 8.5 4 − 13

243 (Quiet after solar flare) 2.4 5.8 7.9 4.3 − 11

Note. The last two columns show the maximum Kp and minimumDst for the
corresponding days. Dst is given in nano tesla.
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trained, validated and tested with TEC data covering the last two solar cycles obtained from the rapid UQRG
global ionosphere maps (GIMs). In this paper, several additional drivers (SYM‐H, geomagnetic activity index
Hp30, solar radio flux index F10.7,Wprot and Econv) were included in order to see whether this would increase the
performance of the model significantly or not. The final model uses the historic TEC data (past 3 days), the
universal time, longitude, latitude and day of year as model inputs and no additional drivers. The performance of
the model was tested for quiet and geomagnetic storm conditions using data from a high solar activity year (HSA)
2015 and low solar activity (LSA) year 2020. The average RMSE is found about 3.3 TECU and 1.5 TECU for
(considering all days) 2015 and 2020, respectively. During storm days the model is showing higher RMSE values
in 2015 (average of 4.2 TECU). The model's performance for the test data with LSA conditions (2020) stayed
almost the same for all data and data during storm conditions with RMSE of about 1.6 TECU. The accuracy of the
LSTM‐based model was also compared to the quiet‐time feed forward NN (FNN)‐based model and the Neu-
strelitz TEC model (NTCM). The results indicate that the LSTM‐based model is outperforming both models.
Furthermore, the performance of the LSTM‐based TEC model was also tested for near real‐time (RT) cases by

Figure 12. The performance in term of mean, standard deviation and RMSE of the differences for the LSTM‐based, quiet‐
time FNN‐based and NTCM model for 14th of April (a), 15th of April (b), 3rd of June (c), 4th of June (d), 30th of August
(e) and 31st of August (f) in 2022.
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using International GNSS Service (IGS) RT products as historical TEC inputs and the model performs well during
both quiet and perturbed periods and outperforms the FNN‐based model and NTCM.

Data Availability Statement
The global ionosphere maps (GIMs) from Universitat Politècnica de Catalunya (UPC) can be downloaded from
the Crustal Dynamics Data Information System (CDDIS) (Noll, 2010), available at https://cddis.nasa.gov/
archive/gnss/ionex/. The combined final maps (IGSG) were downloaded from CDDIS as well. For downloading
from CDDIS with the https protocol, an Earthdata login account is needed. The real‐time IRTG GIMs (Liu &
Hernández‐Pajares, 2022) were obtained from http://chapman.upc.es/irtg/archive/2022/. The Hp30 data is
downloaded from the GeoForschungsZentrum (Matzka et al., 2022), available at https://www.gfz-potsdam.de/en/
hpo-index/. The SYM‐H data from the World Data Center for Geomagnetism, Kyoto (World Data Center for
Geomagnetism et al., 2022) is available at http://wdc.kugi.kyoto-u.ac.jp/aeasy/index.html. The solar flux index
F10.7, the interplanetary magnetic field components Bx, By, and Bz, the solar wind bulk flow speed vsw, the bulk
flow latitude and longitude Latsw, Lonsw and the proton density ρprot were downloaded from the OMNIWeb
interface (Papitashvili & King, 2020), available at https://omniweb.gsfc.nasa.gov/form/dx1.html. We would like
to thank these organizations for making their data publicly available.
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