elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal and Spatial Influences

Hoppe, Hauke und Dietrich, Peter und Marzahn, Philip und Weiß, Thomas und Nitzsche, Christian und Freiherr von Lukas, Uwe und Wengerek, Thomas und Borg, Erik (2024) Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal and Spatial Influences. Remote Sensing, Seiten 1-22. Multidisciplinary Digital Publishing Institute (MDPI). ISSN 2072-4292.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
1MB

Offizielle URL: https://www.mdpi.com/journal/remotesensing

Kurzfassung

Machine learning models are used to identify crops on satellite data, which achieve high classification accuracy but do not necessarily have a high degree from transferability to new regions. This paper investigates the use of machine learning models for crop classification using Sentinel-2 imagery. It proposes a new testing methodology that systematically analyzes the quality of the spatial transfer of trained models. In this study, the classification results of Random Forest (RF), eXtreme Gradient Boosting (XGBoost), Stochastic Gradient Descent (SGD), Multilayer Perceptron (MLP), Support Vector Machines (SVM) and a Majority Voting of all models and their spatial transferability are assessed. The proposed testing methodology comprises test scenarios to investigate phenologi- cal, temporal, spatial, and quantitative (quantitative regarding available training data) influences. Results show that the model accuracies tend to decrease with increasing time due to the differences in phenological phases in different regions, with a combined F1-score of 82% (XGboost) when trained on a single day, 72% (XGBoost) when trained on the half-season and 61% when trained over the entire growing season (Majority Voting).

elib-URL des Eintrags:https://elib.dlr.de/205064/
Dokumentart:Zeitschriftenbeitrag
Titel:Transferability of Machine Learning Models for Crop Classification in Remote Sensing Imagery Using a New Test Methodology: A Study on Phenological, Temporal and Spatial Influences
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hoppe, Haukehauke.hoppe (at) igd-r.fraunhofer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Dietrich, PeterUFZ LeipzigNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Marzahn, PhilipUniversity of RostockNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Weiß, ThomasFraunhofer Institute RostockNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Nitzsche, ChristianFraunhofer Institute RostockNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Freiherr von Lukas, UweFraunhofer Institute RostockNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Wengerek, ThomasHochschule StralsundNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Borg, ErikErik.Borg (at) dlr.dehttps://orcid.org/0000-0001-8288-8426171175673
Datum:2024
Erschienen in:Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Seitenbereich:Seiten 1-22
Verlag:Multidisciplinary Digital Publishing Institute (MDPI)
Name der Reihe:Remote Sensing
ISSN:2072-4292
Status:veröffentlicht
Stichwörter:Machine Learning; Spatial transferability; Crop Classification; Sentinel-2
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Neustrelitz
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Nationales Bodensegment
Hinterlegt von: Borg, Prof.Dr. Erik
Hinterlegt am:07 Nov 2024 14:03
Letzte Änderung:07 Nov 2024 14:03

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.