elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Train on synthetic - Test on real: Domain adaptation for strain-based damage detection on an aircraft wing

Conen, Philipp und Raddatz, Florian und Wende, Gerko (2024) Train on synthetic - Test on real: Domain adaptation for strain-based damage detection on an aircraft wing. 34th ICAS Congress, 2024-09-09 - 2024-09-12, Florenz, Italien.

[img] PDF
950kB

Kurzfassung

There is an increasing development towards sustainable aviation. Thus, there are multiple approaches to decrease emissions. One of the possible solutions is mass reductions of structural elements. For these structural elements, mass reduction leads to an increasing need for precise maintenance. To fulfill this need, present research focuses on predictive or prescriptive maintenance. Nevertheless, predictive maintenance requires the as-is condition of a component for effective planning. Therefore, the train on synthetic - test on real approach is considered for structural health monitoring of the components. The approach is examined on the prediction of crack-like damages on an aircraft wing using strain-based data. Hence, a methodology is outlined that is used for the present paper. This methodology covers the development of a suitable test scenario. In the next step, a virtual and a physical representation of the scenario is built to generate a data set for each domain. Virtually, structural finite element model simulations are prepared and automated in Salome Meca using the Code_Aster solver. Physically, a test stand consisting of a cantilever with applied strain gauges is constructed. The objective is to train a machine learning model with the virtual data set and test it with the physical data set. For this, different supervised machine learning models from the Python library Scikit-Learn are compared. The classification of a damaged or undamaged structure works well among all models and all data sets. For the regression of the damage position success is recognized inside the virtual and the physical data set. Training the models in the virtual and testing them in the physical domain leads to problems for this initial investigation. A similar behavior appears for the multi-output regression. This requires a deeper understanding of both data set characteristics as well as continuing to exploit further machine learning opportunities like neural networks and dedicated domain adaptation methods.

elib-URL des Eintrags:https://elib.dlr.de/204979/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Train on synthetic - Test on real: Domain adaptation for strain-based damage detection on an aircraft wing
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Conen, PhilippPhilipp.Conen (at) dlr.dehttps://orcid.org/0000-0002-4418-4468169343139
Raddatz, FlorianFlorian.Raddatz (at) dlr.dehttps://orcid.org/0000-0002-0660-7650NICHT SPEZIFIZIERT
Wende, Gerkogerko.wende (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:Train on synthetic - Test on real; Sim to real; Domain adaptation; Supervised machine learning; Structural health monitoring
Veranstaltungstitel:34th ICAS Congress
Veranstaltungsort:Florenz, Italien
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:9 September 2024
Veranstaltungsende:12 September 2024
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Effizientes Luftfahrzeug
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L EV - Effizientes Luftfahrzeug
DLR - Teilgebiet (Projekt, Vorhaben):L - Digitale Technologien
Standort: Hamburg
Institute & Einrichtungen:Institut für Instandhaltung und Modifikation > Prozessoptimierung und Digitalisierung
Hinterlegt von: Conen, Philipp
Hinterlegt am:01 Jul 2024 08:10
Letzte Änderung:11 Okt 2024 08:53

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.