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Abstract

There is an increasing development towards sustainable aviation. Thus, there are multiple approaches to
decrease emissions. One of the possible solutions is mass reductions of structural elements.
For these structural elements, mass reduction leads to an increasing need for precise maintenance. To ful-
fill this need, present research focuses on predictive or prescriptive maintenance. Nevertheless, predictive
maintenance requires the as-is condition of a component for effective planning.
Therefore, the train on synthetic - test on real approach is considered for structural health monitoring of the
components. The approach is examined on the prediction of crack-like damages on an aircraft wing using
strain-based data.
Hence, a methodology is outlined that is used for the present paper. This methodology covers the development
of a suitable test scenario. In the next step, a virtual and a physical representation of the scenario is built to
generate a data set for each domain. Virtually, structural finite element model simulations are prepared and
automated in Salome Meca using the Code_Aster solver. Physically, a test stand consisting of a cantilever
with applied strain gauges is constructed. The objective is to train a machine learning model with the virtual
data set and test it with the physical data set. For this, different supervised machine learning models from the
Python library Scikit-Learn are compared.
The classification of a damaged or undamaged structure works well among all models and all data sets. For the
regression of the damage position success is recognized inside the virtual and the physical data set. Training
the models in the virtual and testing them in the physical domain leads to problems for this initial investigation.
A similar behavior appears for the multi-output regression. This requires a deeper understanding of both data
set characteristics as well as continuing to exploit further machine learning opportunities like neural networks
and dedicated domain adaptation methods.

Keywords: Train on synthetic - Test on real; Sim to real; Domain adaptation; Supervised machine learning;
Structural health monitoring

1. Introduction
Sustainable aviation is of growing interest to industry, politics, and society. The Paris Agreement
[1] underlines these interests with the global motivation to limit global warming to 1.5°. In addition,
the German Federal Government [2] sticks to the Paris Agreement, especially for transportation,
which includes also the aviation sector. Furthermore, Destination 2050 [3] plans to reduce 50 %
CO2 emissions compared to 2005, with the future goal of net zero European aviation. Finally, the Air
Transport Action Group adheres to the United Nations Sustainable Development Goals (SDGs) [4, 5].
In particular, SDG-12 (Responsible consumption and production) and SDG-13 (Climate change) are
highly relevant for the purpose of this paper. For SDG-12 the state of the art is a recycling rate of
85 % to 90 % of an aircraft (measured by weight) [4]. With regard to SDG-13, CO2 today’s emissions
are already 54 % lower than in 1990 [4].
Several strategies and technologies are present to achieve these goals [6]. First, sustainable aviation
fuels emit less CO2 than kerosene [7]. Second, hydrogen only emits water and no CO2 [8]. Finally,
mass reduction lowers the demand for fuel [6].
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This work focuses on the scenario of mass reduction.
Mass reduction is challenging as engineers push the struc-
tures closer to their physical limits. As a result, they pos-
sibly become more vulnerable or less damage-tolerant.
Therefore, new methods and concepts are necessary for
maintenance, repair and overhaul.
Predictive and prescriptive maintenance are an essential
part of these new concepts. Only with additional as-is in-
formation, these concepts can work accurately. To know
the exact condition of a structure, structural health mon-
itoring is required. Current research on structural health
monitoring or damage detection relies on data-driven ap-
proaches. However, data that represents damage is rare.
A possible solution to gather data is the train-synthetic-
test-real approach [10] because simulation data is easy to
access [11].
The research in this paper investigates the train on syn-
thetic - test on real approach for a specific application ex-
ample. The use case is the prediction of crack-like dam-
ages on an aircraft wing using strain-based data for a su-
pervised machine learning model. For this, a suitable test
case is required with less complexity. As a result, a well-
known cantilever is chosen for initial investigations. Fur-
thermore, a virtual and a physical model of the test scenario is necessary. In the next step, virtual
and physical data sets are generated with the corresponding model. The approach provides for train-
ing with the virtual data set and testing with the physical data set. The key outcome of the resulting
model is the prediction of the damage existence, position, and width.

2. State of the art
The subcategory for the above mentioned approach is also known as transfer learning. It is a non-
classical machine learning challenge since the source and target data do not share the same domain.
Possible domains are the feature space, label space or distribution space. [9, 11, 12, 13]
Transfer learning is categorized into inductive transfer learning, transductive transfer learning, and
unsupervised transfer learning (see Figure 1). Unsupervised transfer learning is the case if source
and target distributions as well as the tasks from the source and target domain, are not matching. In
inductive transfer learning, the source and target distributions are matching, but the tasks from the
source and target domains do not. For transductive transfer learning, the tasks from the source and
target domain are matching, but the source and target distributions are not, which is the case for the
investigations in the present paper. It is also known as domain adaptation. [9, 12, 13]
Following, a literature review is done for the fields of domain adaptation and crack detection us-
ing Scopus. Here it is to remark that domain adaptation and domain adaption partly are used

Table 1 – Confusion matrix for the search strings: ML (Machine learning), TL (Transfer learning), DA
(Domain adaptation), SHM (Structural health monitoring), DD (Damage detection), and CD (Crack
detection) on Scopus with standard settings in December 2023.

ML TL DA SHM DD CD
ML 634006
TL 24445 103591
DA 3268 4382 42145

SHM 1692 242 64 44349
DD 4432 718 90 12505 114048
CD 899 269 16 3131 10153 29048
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incorrectly. The dominant version is domain adaptation. As a starting point, Table 1 gives a gen-
eral overview of the related research fields. Ongoing to the general overview, the search string
(TITLE-ABS-KEY (domain AND (adaptation OR adaption) AND (crack AND detection))) on Sco-
pus delivers 16 publications. Nevertheless, none of these publications depicts the work presented
in this paper. From a methodology perspective, eight publications refer to unsupervised learning
[14, 15, 16, 17, 18, 19, 20, 21] and three to self-supervised learning [17, 21, 20]. Some of these au-
thors see self-supervised learning as a subcategory of unsupervised learning. From the application
side, ten publications contain image recognition [22, 23, 17, 14, 20, 24, 18, 15, 25, 21] and four to
vibrations, acoustics or guided waves [26, 16, 27, 19, 28]. In addition, only three of 16 publications
handle the domain shift from the synthetic domain to the physical domain [28, 18, 19]. Xiang et al.
investigate rotor fault diagnosis based on vibro-acoustics [19]. Wang et al. evaluate fatigue crack
detection based on lamb waves [28]. Lin et al. work on crack detection for roads based on image
recognition [18]. As a result, there is still a research gap for domain adaptation in crack detection
using synthetic strain data.
The review above returns only a few cases for training with synthetic data. Thus, the search string
gets further constraints and extensions. The refined search string results in (TITLE-ABS-KEY (do-
main AND (adaption OR adaptation) AND ((crack OR damage OR fault) AND detection) AND syn-
thetic)). This search returns eight publications. Nevertheless, there is agreement on the necessity of
the train-synthetic-test-real approach [29, 30, 31]. Ha et al. [30] detect faults of a planetary gearbox
using deep learning and vibration data. Ghorvei et al. [31] use unsupervised learning for bearing fault
diagnosis while Wang et al. [29] use deep learning. Difficulties for training machine learning models
for structural health monitoring are different operating conditions [30]. When dealing with synthetic
data, the data is often not realistic enough [29]. Furthermore, global and local distribution gaps have
to be distinguished [31]. Another problem is the lack of damage data [30, 29], especially when it is
infeasible, expensive, or for safety critical systems [29]. Synthetic data overcomes this problem since
it is easily accessible and pre-labeled [29]. In addition, it is less expensive than generating big data
sets of experimental data. There are two outstanding works for an overview of domain adaptation
and transfer learning that are not included in the above research strings. These are Redko et al. [9]
and Kouw et al. [12].
When dealing with domain adaptation, generalization is a crucial task. Generalization describes the
complexity and flexibility of a classifier. Models can be overfitted, underfitted, or well-fitted. Overfitted
models can not generalize to new data. In this case, regularization is a solution. Nevertheless, high
regularization can also lead to underfitted models. [12]
For generalization, it is essential to identify a suitable training set and include as much realistic fea-
tures into the training data as possible. Possible features are correlated and uncorrelated noise.
Linear operators like crosscorrelation, autocorrelation, and convolution can introduce these features
into a data set. [11]
The challenge of generalization can also be expressed as the probability distribution of the source
and target domains which are not equal.

Ps(xs,ys) 6= Pt((xt,yt) (1)

P refers to the probability distribution, x to the feature space, and y to the label space of the source s
and the target t. One possible solution for the generalization issue is the subspace mapping

Ps(T (xs) = Pt((xt) (2)

with a suitable transformation T . Neural networks can find such transformations [32, 33, 34]. [11]
To conclude, research is already done in the field of domain adaptation and damage detection, but it
still lacks in amount, depth, and application.

3. Methodology
This section outlines the methodology that is followed in the present paper. First, the process towards
the train on synthetic - test on real approach is shown. Second, the data gets explained and catego-
rized into features and labels. Finally, the architectures of the different machine learning models that
come into use for this project are outlined.
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Figure 2 – Process description for a train on synthetic - test on real approach.

3.1 Process description
Figure 2 displays a general description of the train on synthetic - test on real approach that is followed
in the present paper. The starting point is the design of a suitable test scenario (section 4.) with the
possibility of modeling an equal physical and virtual representation. Next, this requires the develop-
ment of a simulation model (subsection 4.2 ). The simulations can be anything reproducible in the
physical domain. In the specific case of this work, these are strain-based structural simulations, that
generate data for different load-damage-scenario. Load-damage-scenario means different combina-
tions of loads or displacements under different damage characteristics. To prove the independence
of the data against the mesh, a sensitivity analysis is required (see subsubsection 4.2.2 ). With the
existence of a valid simulation model a parameter study needs to be done to generate a data set (see
subsubsection 4.2.3) that contains the features and labels (see subsection 3.2). In most cases, the
data needs some kind of post-processing after the generation phase. At least this means conversion
into suitable formats, normalization of data, interpolation between data points, and concatenation of
single result files to a common database. The fixed locations of the physical sensors require interpo-
lations between some virtual data points to have matching data points in both domains. Equal work
is required for the physical domain (see subsection 4.1).
With the existence of a common and complete data set for both domains, a pre-analysis for both
data sets is carried out (see section 5. ). This contains data analysis on the one hand and training
of machine learning models on the other hand. The machine learning models are trained inside
their corresponding domain first, to predict the damage existence, position, and width. In the transfer
phase, the machine learning model is trained with the virtual and tested with the physical data set
(see section 6.). The evaluation is split into multiple stages. First, a classification model predicts the
existence of damages (see subsection 6.1 ). Second, a regression model predicts the position of a
damage (see subsection 6.2). Finally, a multi-output regression model predicts the position and the
width of the damage (see subsection 6.3).
All models face a performance evaluation. The evaluation metrics are the accuracy, precision, recall,
and F1 score for the classification models as well as the R2 score, the mean squared error, and the
mean absolute error for the regression models. Assuming a perfect scenario, no additional changes
are required inside the synthetic machine learning model. In reality, a perfect scenario seems unlikely,
due to noise and environmental conditions. This is why the train on synthetic - test on real models
are compared to the models that are trained in their corresponding domain. The focus of the present
paper is on supervised machine learning models only, since the labels are well-known from the
simulations.

3.2 Data
This subsection explains the data that is used for the training and testing of the machine learning
models. The data is further categorized into features and labels. For the train on synthetic - test on
real approach it is important to have equal features and labels in the physical and virtual data sets.
Table 2 gives an overview of the features and labels used in both data sets.
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3.2.1 Features
The main features are the strain values from discrete points. These can be physical sensor values or
virtual sensor values. The physical sensor points have a fixed location since they are applied perma-
nently. To match the virtual sensor points with the physical sensor points, interpolation between two
mesh nodes of the virtual model is required for some of these points. In this paper six features of this
type are available theoretically (see subsubsection 4.1.2). Practically, only three of them are relevant
yet, since for constant damage length of 80 mm (cantilever width) there will be no difference in the
sensor values of row A and row B. Further restrictions for the strain features are the in-existence of
damages on sensor positions for the physical domain since this would destroy the sensors. As a
result, these damage positions are excluded from the synthetic data set, since this could influence
the results of the later machine learning model. Additional features could be the load and the dis-
placement. For linear structural mechanics, load and displacement are strongly interconnected. This
means, that for machine learning models that represent a linear structural mechanics problem, there
shouldn’t be any benefit using both features. Above all, measuring very small displacements of mul-
tiple points is a non-trivial task in the physical domain. In contrast, the load is easy to estimate in the
physical and the virtual domain. Thus, for this paper, the load is considered as a feature, while the
displacement is out of scope. When it comes to non-linear material behavior, the material character-
istics change. For this case, it could be a potential benefit to include displacement as an additional
feature.

3.2.2 Labels
Possible damage characteristics are the existence, the position, the width, and the length. The
present paper tackles the prediction of the existence, the position, and the width (see Table 2). The
prediction of the length is out of scope. Regarding the damage existence, classification is used. The
damage position and damage width are predicted using a regression model. Corresponding to these
two methods the data sets (see Table 2) are reduced to the relevant labels only.

4. Test scenario
As pointed out in section 3., the first step is to find a suitable test scenario that can be equally repre-
sented in the physical and virtual domains. The first part of the test scenario requires an investigation
object. To use the train on synthetic - test on real approach for damage detection on an aircraft wing,
a strongly simplified representation of an aircraft wing is developed. For this initial investigation, a
bending beam in the form of a rectangular aluminum cantilever is chosen. This eliminates geometrical
and material complexity. Table 3 shows the material properties (left) and the geometrical properties
of the cantilever (right). At this point, it is to remark that this scenario isn’t a realistic in-flight scenario
since the aerodynamic loads would lead to an upward bending instead of an additional downward
bending as presented here. An upward bending would result in much more experimental effort within
the given boundary conditions. Nevertheless, the downward bending is still a relevant scenario, e.g.
during refueling. A corresponding application in the real world would benefit the eliminated com-
plexity of in-flight structural health management. Moreover, it would promote the approach of human
centricity. The bending beam itself is a well-known structural scenario and is analytically solvable.
The validation of the numerical model takes place with the analytical displacements of a gravitational
load with an additional single load. The maximum displacement under gravitational load

f GL =
ρ ·V ·g · l3

8 ·E · I
(3)

with the gravitation g = 9.81ms−2, the Young’s modulus E, the area moment of inertia I, the density
ρ, the volume V , and the length of the cantilever lc [36]. The maximum displacement under a single

Table 2 – Overview of the features and labels used in the physical and virtual data set.

Load A-0 A-1 A-2 Damage existence Damage position Damage width

.. .. .. .. .. .. ..
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Table 3 – Geometrical and material properties of the EN AW-6060 cantilever [35].

Material characteristics Value Unit

Density 2.7 kgdm−3

Young’s modulus 70000 Nmm−2

Tensile strength 215− 260 Nmm−2

Magnesium 0.5 %
Silicon 0.5 %
Iron 0.2 %

Geometrical characteristics Value Unit

Length 550 mm
Width 80 mm
Height 8 mm
Volume 352000 mm3

Area moment of inertia 3413.3 mm4

load

f SL =
F · l3

3 ·E · I
(4)

with the force F , and the lever arm of the force lf [36]. The maximum displacement under gravitational
load and single load

f CL = f GL + f SL (5)

[36]. The area moment of inertia

I =
b ·h3

12
(6)

with the width b and thickness h of the cantilever [37]. Under the conditions mentioned in Table 3
and a single load of 9.81 N that is applied at a lever arm of 540 mm from the clamping this results in a
displacement of f CL = 2.849mm.
The second part of the test scenario requires a damage object. The initial idea of this damage is a
crack. For natural cracks, there are two main problems. First, natural cracks with certain character-
istics are hard to reproduce, since they occur randomly as a result of overload or fatigue. Second,
cracks are irreversible damages. This would require multiple cantilevers for testing, which means
high effort. Thus, reversible artificial crack-like damages are introduced. For this, rectangular pro-
files are placed underneath the cantilever, which act as additional support trestle. This increases the
local stiffness instead of decreasing it like natural cracks would do. The rectangular profiles have a
constant length that matches the cantilever widths (80 mm). Possible damage widths are 3 mm and
5 mm. The artificial damages are made of the same material as the cantilever (EN AW-6060) to avoid
damages, either on the cantilever or on the artificial damages.
The following section is split into subsections for the physical and the virtual representation of the
test scenario. Physically, this contains a test stand. Here, the construction, the data acquisition
system, the data generation as well as measurement uncertainties and error sources are pointed
out. Virtually, the development of the numerical model, a sensitivity analysis, and the data generation
are described.

4.1 Physical model: Test stand
The following subsection covers the physical representation of the test scenario. This contains the
construction, the data acquisition system, the data generation of the test stand as well as measure-
ment uncertainties and error sources.

4.1.1 Construction
Figure 3 shows a schematic of the test stand. It is built out of aluminium profiles. A robust ground
plate works as the baseline of the test stand. On the left side of the ground plate, there is an equally
robust support mounted. The robustness is essential to eliminate errors that occur from the bending
of the test stand itself. The clamp fixes the cantilever on the support. An adapter on the free end
of the cantilever allows applying loads without harming the cantilever. The adapter has a length of
80 mm (cantilever width) and a width of 20 mm. Thus, the center of the load is at 540 mm from the
clamping. In addition, the ground plate carries two rows of linear guides of type MRT30V from Rollon
[38]. This allows the two wagons to slide underneath the cantilever. The wagons carry a stack of
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Figure 3 – Test scenario: Cantilever with fixed clamping, support as well as gravitational and single
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Figure 4 – Cantilever with applied strain gauges in yellow, with the clamp location in black, and the
adapter in red.

aluminium profiles (stamp). On top of these profiles, there is an additional assembly that allows to
fine adjust the height of the artificial damages to the exact height of the cantilever. This assembly also
allows to exchange the artificial damages in y direction. That is necessary since sliding the stamp in x
direction would destroy the applied sensors on the lower side of the cantilever. Furthermore, it allows
the use of different damage widths. At the edge of the linear guides, a magnetic band is applied on
the ground plate.

4.1.2 Data acquisition system
As known from subsection 3.2, there are four features and three labels to span the required data set
for the investigations. The most important features are the strain gauges. The criteria for choosing
the right strain gauges are the uni-axial strain condition, the measurement of precise local stresses
instead of averaged global stresses, the homogeneous material properties, and the laboratory con-
ditions. This results in sensors of type K-CXY3-0030-3-350-4-030-N from HBM (see Figure 4) [39].
This sensor type covers two measurement grids that are rotated by 90° to each other on one carrier
foil (see Figure 5). Figure 4 displays the locations of the different sensors on the cantilever. The
letters A and B indicate the distribution in y direction, while the numbers reaching from 0 to 2 indicate
the distribution in x direction. The strain gauges are applied on both sides, in two rows and three
columns over the cantilever. In total, this results in 12 strain gauge carrier foils and 24 single strain
gauge measurement grids. Each pair on the upper and lower sides of the cantilever is interconnected
as a resistive full-bridge that eliminates everything except the bending strain from the main load di-
rection. This results in six strain values for the sensors A-0, A-1, and A-2 as well as B-0, B-1, and B-2.
The strain values from row B are not relevant for this investigation. Since there are only damages that
correspond to the full width of the cantilever, there won’t be any differences in strain between strain
values from row A and row B. Nevertheless, the second row is necessary for further investigations of
the damage length. These are not covered within the present paper but are still considered for the
cantilever already. The acquisition itself takes place with the measurement amplifier MX1615-B from
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Characteristic Value Unit

Measurement grid length 3 mm
Measurement grid width 3.3 mm
Carrier length 10.9 mm
Carrier width 7.6 mm
Nominal resistance 350 Ω

Max. voltage 10 V
k-factor 2 -
Temperature response 23×10−6 ppm/K
Measurement grid material Constantan -
Carrier foil material Polyimide -

Table 4 – Characteristics of K-CXY3-0030-3-350-4-
030-N T-rosette strain gauge from HBM [44].

Figure 5 –
K-CXY3-0030-3-350-4-030-N strain

gauge from HBM [39].

HBM [40]. The last feature is the load that is applied at the adapter (see red elements in Figure 3 and
Figure 4). At this stage, the load is considered as a static weight. The options for the load feature
include 0 kg, 0.5 kg, and 1.0 kg. The acquisition of this information takes place manually.. Regarding
the labels, the damage position and the damage width are relevant. A magnetic band allows the
extraction of the position of the artificial damage by incremental measurements with a resolution of
0.01 mm. The magnetic band is of type MB20-50-10-1-R from ELGO [41]. In addition, the LMIX2
sensor from ELGO evaluates the position [42]. Finally, the Z50 module from ELGO displays the val-
ues on a screen [43]. The digital interface isn’t used yet. Thus, the acquisition is done manually at
this stage. The last label is the crack width. The crack width depends on the artificial crack that is
inserted into the assembly on top of the stamp. Since the insertion is done manually, the acquisition
takes place manually, too.

4.1.3 Data generation
To generate the physical data set, experiments are made with different combinations of features
and labels. Since the data set will be small compared to the virtual data set it is important to have
random values on the one hand, but a good distribution on the other hand. To generate a single
value of one load-damage-scenario the strain values are recorded for 1 s with a sampling rate of
4.8 kHz. The resulting single value is the mean of all the 4800 values. A slight delay between adjusting
and measuring guarantees to eliminate vibrations. The adjusting and recording of all load-damage
scenarios is done as follows. A zeroing of the sensor can not be done by lying the cantilever flat on
the ground. The reason is that this would first, possibly harm the sensors and second, result in an
inaccurate zero state. As a result, the sensors are zeroed with the cantilever fixed on the test stand,
but without additional load and no damage applied. Next, the stamp with the artificial damage of 3 mm
width is positioned randomly at the free end underneath the cantilever. After taking all the required
information, the stamp is positioned four more times in the first section between the free end of the
cantilever and the sensor A-2. This is repeated for the section between the sensors A-2 and A-1 as
well as A-1 and A-0. There are no values for the section between the sensor A-0 and the clamp since
it was not possible to place the artificial damage underneath the cantilever due to the pre-load force
of the artificial damage. This procedure is repeated for all combinations of loads and crack widths.
Due to completeness, sensor values are taken also for all load cases, without applying damages.
The final post-processing takes place in Python. It includes the extraction of the mean of each file
which represents a load-damage-scenario. All features and labels are stored in a single data file.

4.2 Virtual model: Numerical simulation
The following subsection covers the virtual representation of the test scenario. This contains the
development of the geometry, the mesh and the numerical model, the mesh automation, a sensitivity
analysis, and the data generation.

8
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4.2.1 Development of the model
The virtual model is a physically accurate reproduction of the physical model. For the creation of the
geometry and the mesh the software Salome is used. Salome offers the possibility of dumping stud-
ies. This functionality generates Python scripts based on the inputs inside Salome. The development
of the finite element model takes place in Salome Meca which is a wrapper for the solver Code_Aster.
Salome Meca supports an equal functionality to dump the study. With both scripts, further automation
is made for the sensitivity analysis and the parameter study.
As a starting point, a three-dimensional geometrical model is built. For this, multiple points are
defined. From these points, further geometrical objects like lines, faces, and a volume arise. In
addition, groups of lines, faces, and the volume are created The groups are required for the later
mesh and the finite element model. Geometrical inputs are the overall dimensions of the cantilever,
the load face, and the reaction face. The damage is numerically represented as an additional fixation
in z direction (support trestle), that is applied on the reaction face. The geometrical groups split into
one single group for the volume, groups of faces for the load face, the reaction face, and the fixation
face as well as groups of edges for all edges in x direction, all edges in y direction, all edges in z
direction, and an edge along the x axis of the sensors of row A.
The geometry is used as input for the mesh. Like the geometry, the mesh is also three dimensional.
Initial settings are hexahedron mesh conditions for the third dimension and mapped quadrangle mesh
for the second dimension. For the boundaries of this research, a quadrangle mesh is essential for
a smooth and accurate numerical representation of the damage. Regarding the settings for the first
dimension, wire distances in mm are defined for the groups that contain all the edges in x, y, and
z directions. As for the geometry, groups are defended for the mesh. Salome imports all existing
groups automatically. Additionally, some groups are converted to groups of nodes. These are groups
that are not meant as an option for boundary conditions of the finite element model, but for the export
of strain data, e.g. the edge along the x axis of the sensors of row A.
The mesh is the first essential input for the numerical model. This requires the Code_Aster func-
tionality LIRE_MAILLAGE. In the next step, the model is linked to the mesh (AFFE_MODELE). This
contains the 3D element modeling method and the mechanical phenomena. The definition of a
material (DEFI_MATERIAU) requires the Young’s Modulus, Poisson ratio, and the density (see Ta-
ble 3. Now the material is linked to the model (AFFE_MATERIAU). Essential boundary conditions
(AFFE_CHAR_MECA) are displacement impositions in x, y, and z direction for the fixation face as
well as displacement impositions in z direction for the reaction face. Natural boundary conditions are a
negative gravitational load of 9.81 ms−2 and (initially) a pressure of 6131.25 Nm−2 that acts as a single
load. The gravitational load is assigned to the complete model, while the pressure is only assigned
to the load face. In the context of the parameter study, the pressure can take different values. Next,
the model, the material, and the boundary conditions are assigned to a static mechanical analysis
(MECA_STATIQUE). Code_Aster calculates the displacement automatically. The calculation of the
strain requires additional post-processing (CALC_CHAMP). Both, the displacement and the strain,
are the raw values of the calculation nodes (ELNO). Regarding the strain, the only relevant compo-
nent is the bending strain in x direction (EPSI_XX) For the extraction of strain and displacement, the
data is converted into table format (POST_RELEVE_T) and exported to a .csv file (IMPR_TABLE).
Finally, the entire data is exported to a .rmed file. This allows to open the results in a post-processor
like ParaVis to view the results directly on the geometry. The file is not necessary for the later data
generation, since this leads to unnecessary high data storage. Nevertheless, it is helpful for investi-
gations during the development phase.

4.2.2 Sensitivity analysis
Sensitivity analyses guarantee accurate results under the condition of acceptable computational ef-
fort. At a certain point, relevant parameters e.g. the maximum displacement become independent of
the cell sizes. This point indicates suitable mesh options. The sensitivity analysis takes the gravita-
tional load and the maximum single load of 6131.25 Nm−2 into account. Damages are not covered in
the sensitivity analysis. Available mesh options reach from 0.5 mm to 10 mm in x direction, 0.5 mm to
8 mm in y direction, and 1 mm to 4 mm in z direction. In total, this results in 75 possible mesh options.
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Figure 6 – Sensitivity analysis for a cantilever of size 550 mm× 80 mm× 8 mm with gravitational load
and single load of 6131.25 Nm−2.

Because of the high amount of possible mesh options, the sensitivity analysis itself as well as the
later parameter study requires automation for meshing and solving. As mentioned above, Python
can automate the generation of geometries and meshes with dumped scripts from Salome. The
dumped script contains three additional variables, that allow an easy manipulation of the cell sizes
in the three dimensions x, y, and z. An additional function exports the mesh in the .med format and
with a representative file name to a desired directory. The simulations can be run from a lightweight
sub-tool of Salome Meca called ASTK. After exemplary preparing the .csv, .comm, .export, .med,
.mess, and .rmed files as well as the .base folder with ASTK, the simulation can be run also from
a Linux shell. For this, additional software is written to automate the generation of all the cases in
the form of folders with the required .comm, .export, and .med files. After the generation, the script
executes all simulations one after another. Finally, the script post-processes the resulting .csv files
and extracts the maximum displacements at the free end of the cantilever. Furthermore, it extracts
the strains for all calculation nodes along the x axis of the sensor row A for the synthetic data set.
For the sensitivity analysis, the maximum displacements are concatenated with the cell sizes of the
mesh in each dimension.
Figure 6 shows the sensitivity analysis. In contrast to common sensitivity analysis, there isn’t only
one global variable for the cell sizes in all dimensions, but each for one single dimension. As a
result, the displacements are plotted over the mesh size in x direction. Multiple lines indicate the
mesh options in y and z direction. Additionally, a horizontal line introduces the analytical solution
mentioned in section 4. . There aren’t results for every mesh combination. The reason for this is
increasing residuals in some simulations that cause errors when reaching a certain criterion. In the
present paper, the criterion takes a value of 1×10−5. An example are the highly accurate meshes with
cell sizes of 0.5 mm in y direction. Only the combination with a cell size of 4 mm in z direction delivers
good results for fine cell sizes in x direction. As expected, a general trend is lower displacements for
courser cell sizes. This has the most influence for cells in x direction, medium influence for cells in
z direction, and less influence for cells in y direction. In general, acceptable convergence is present
for x cell sizes of ≤ 1mm A closer look at the displacements for x cell sizes of 0.5 mm to 2 mm shows
that there are three clusters. One cluster underestimates the analytical solution, while another clearly
overestimates the analytical solution. The results from the overestimated cluster show unexpected
behavior. It contains mesh options with cell sizes of 1 mm and 2 mm in z direction, which should deliver
the most accurate results. This could indicate problems either with the analytical solution or with the
model. The third cluster reaches the analytical solution most closely for x cell sizes of 0.5 mm. The
mesh options with the best performance are cell sizes of 0.5 mm× 8 mm× 2 mm in x, y, and z direction.
In contrast to the best mesh options mentioned above, another mesh is chosen for the data generation
phase, because the simulations failed for most load-damage scenarios. There are two possible
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reasons for this. First, there is the damage-based non-linearity that comes into play, since damages
have not been covered during the sensitivity analysis. This non-linearity leads to high residuals.
Second, there is the aspect ratio, which is a geometrical bias of a cell face. Since the aspect ratio
of the best mesh has a four times higher aspect ratio (16) compared to the now chosen mesh, this
is a possible reason for the high residuals. As a note, the recommended aspect ratio is ≤ 10 [45].
The chosen mesh options for the data generation are 1 mm× 4 mm× 2 mm. Nevertheless, noise
and variance between the synthetic and physical data sets are omnipresent. Thus, for these initial
experiments, the high-end accuracy of the numerical model is of less importance. This potential
source of variance between data sets of both domains can be seen as an additional robustness test
for the train on synthetic - test on real approach.

4.2.3 Data generation
In comparison to the sensitivity analysis, the parameter study for the synthetic data set generation
needs further automation. This includes two adaptations. First, additional loads are considered as
mentioned in subsection 4.1. Valid options are 0 kg, 0.5 kg, and 1 kg. The gravitational load remains
the same. This adaptation requires changes in the overlaying wrapper, to generate additional case
structures. The second adaptation is about the reaction face. Since the overall goal is to predict
the position and the width of a damage, the damage needs to be shifted along the x axis of the
cantilever. Additional variables are the damage width and the damage position. A function loops
over the variables and spans a reaction face in the geometry and the mesh at a certain position and
with a certain width. As for the physical model, the options for the damage widths are 3 mm and
5 mm. Regarding the damage position, the damage gets shifted every 1 mm from the clamping to
the free end of the cantilever. The only exceptions are locations of applied sensors as pointed out in
subsection 3.2. In total, this results in 2345 combinations where two of them represent an undamaged
scenario with 0.5 kg and 1 kg single load. The case with gravitational load only acts as a baseline.

5. Data pre-analysis
The following section introduces a pre-analysis of the synthetic and physical data sets. It covers
general data analysis, but also investigations that focus on physics, like the distributions of the strain
data investigated among features and labels. This shows the feasibility of distinguishing damage
positions and damage width based on the strain data. Correlations and differences between the
synthetic and physical data sets are also under investigation.
A first investigation shows that there are fewer cases than expected for the virtual data set. The
reason for this are high residuals for simulations with a damage that is located near the clamp (see
subsubsection 4.2.2).
Second, a correlation analysis between features and labels in the form of heat maps is done with the
Seaborn Python library. The heat maps for the virtual and the physical data sets show some differ-
ences. While there is an (equally) strong correlation between each sensor and the damage position
for the virtual data set, there is only a medium correlation between sensor A-0, and a low correlation
between sensors A-1 and A-2 for the physical data set. In contrast, there is a low correlation between
the load and all sensors for the virtual data set, but an increasing correlation from sensor A-0 to
sensor A-2 for the physical data set. Regarding the damage width, there is no correlation recognized
for all features.
In the next step, histograms of all features and labels are made and analyzed. These histograms
are again created with the Seaborn Python library. Inside the physical data set both sensor rows are
recorded during the experiments. For the (physical) sensor pair A-0 and B-0, the results are equal,
while for the sensor pair A-1 and B-1 as well as A-2 and B-2 there are some slight deviations. This
could be just because of the threshold of the histograms since the general characteristic is similar. In
comparison to the virtual data set, there are two outcomes. The first one is, that the distributions for
all three virtual sensors are much more equal than within the physical data set. The second is the
distribution itself, which seems to be a beta distribution. For the damage position, the distributions of
the virtual and physical data sets are contrary, since for the virtual data set data points are missing
near the clamp. Regarding the load and the width, the distributions are even and equal among both
data sets.
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Finally, the regression plots from Seaborn allow insides into the characteristic between all features
and a single label. As observed already in the heat maps, there is a trivial outcome regarding the
damage width, which results in a linear behavior with nearly horizontal correlations for both data sets.
The load seems just to have a scaling effect, which underlines the linearity of the material. Regarding
the damage position, a complex characteristic appears that is strongly different among both data
sets. For the virtual data set, there is a direction of high negative strains for damages that are near
the clamping and low negative strains near the free end of the cantilever. The distributions are high
for the (virtual) sensor A-0 and decrease towards the sensor A-2. Within the physical data set a partly
similar behavior is recognised. Additionally, there are also low negative values for damage positions
near the clamping. The characteristic is changing further when comparing the strains from A-0 to A-1
and A-2. In general, the strains from the virtual data sets have more linearity than the strains from
the physical data set.

6. Train on synthetic - test on real

Table 5 – Classification - Existence of a damage: Ac-
curacy, precision, recall, and f1 scores for the Random-
ForestClassifier (RFC), KNeighborsClassifier (KNC), Lo-
gisticRegression (LR), and RidgeClassifier (RC) from the
virtual data set (VDS), physical data set (PDS), and the
mixed data set (MDS).

Accuracy Precision Recall F1 score

V
D

S

RFC 0.9989 0.9989 1.0000 0.9995
KNC 0.9989 0.9989 1.0000 0.9995
LR 0.9989 0.9989 1.0000 0.9995
RC 1.0000 1.0000 1.0000 1.0000

P
D

S

RFC 0.9714 0.9714 1.0000 0.9855
KNC 0.9714 0.9714 1.0000 0.9855
LR 1.0000 1.0000 1.0000 1.0000
RC 0.9714 0.9714 1.0000 0.9855

M
D

S

RFC 0.9996 0.9996 1.0000 0.9998
KNC 0.9987 0.9987 1.0000 0.9994
LR 1.0000 1.0000 1.0000 1.0000
RC 0.9996 0.9996 1.0000 0.9998

This section covers the investigation of the
train on synthetic - test on real approach.
It splits into the three sub-investigations of
classification, regression, and multi-output
regression. The classification is the start-
ing point to see if a damage is present or
not. Next, a regression model predicts the
damage position. In the last stage, a multi-
output regression model predicts the dam-
age position and damage width. For these
tasks, different models are compared for
the corresponding disciplines. All models
work with classical supervised machine
learning methods. The investigation does
not cover neural networks. For all sub-
investigations, the corresponding models
are trained in their corresponding domain
first. This requires data set splitting of
80 % of training data and 20 % of testing
data for the physical data set and the vir-
tual data set. Common recommendations
reach from 20 % to 30 % testing data set
size [46]. Afterwards, the virtual data set
spans a training data set, while the phys-

ical data set acts as a testing data set. In the transfer phase data normalization is necessary to
eliminate deviations between the virtual and the physical data set. Since positive as well as negative
strain values are present for the feature A-0, A-1, and A-2, the normalization reaches from −1 to 1.

6.1 Classification: Damage existence
The classification task is about identifying whether the structure has a damage or not. Compared
to the regression and the multi-output regression, this is assumed as a trivial task. Nevertheless, it
is an important first step in a possible process chain for structural health monitoring. The models
under investigation are the RandomForestClassifier, KNeighborsClassifier, LogisticRegression, and
RidgeClassifier. All models work with standard settings, except the KNeighborsClassifier. For the
KNeighborsClassifier an ideal amount of 5 neighbors results from an evaluation of settings between
2 ≤ neighbors ≤ 20. The evaluation metrics accuracy, precision, recall, and F1 score are compared
to the different machine learning models. In turn, these different models are again compared to the
machine learning model with the virtual data set, the physical data set, and the mixed data set.
Table 5 shows the results for the evaluation of the classification task. In general, the tests show
overall good results. The virtual data set shows slightly better results for all models, compared to
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the physical data set. A reason for this could be the data set size of the virtual data set, which is
more than 25 times bigger than the physical data set. While the virtual data set performs best with
the RidgeClassifier, the physical data set shows equal results for the LogisticRegression, which is
primarily not a classical classifier. Regarding the mixed data set, there are two important outcomes.
First, all models perform equal or even better compared to the virtual and the physical data set.
Second, the best performance is present for the LogisticRegression model. This draws the thesis
that the the physical data set rather than the virtual data set is pioneering for the outcome of the
mixed data set. A further result is that the recall of all models and all data sets is untrustworthy high.
This is still comprehensible when comparing the only three undamaged cases with the much higher
amount of damaged cases. Furthermore, this is a positive characteristic that provides high safety for
the application. Nevertheless, instability is recognized, which is not visible in the results is presented
in Table 5. Since the data sets contain only three cases of different loads, there are also only three
undamaged cases for one of the two classes of the training data set. When splitting this data set
there is a slight chance of filtering out the small class completely, which leads to an error. This effect
should be covered automatically by the scikit-learn split function, but there seems to be a bug that
data scientists should be aware of.

6.2 Regression: Damage position

Table 6 – Regression - Position of a damage:
R2 score (R2), mean squared error (MSE), and
mean absolute error (MAE) for the LinearRegres-
sion (LR), ElasticNet (EN), RandomForestRe-
gressor (RFR), PolynomialFeatures (PF) from the
virtual data set (VDS), physical data set (PDS),
and the mixed data set (MDS).

R2 MSE MAE

V
D

S

LR 0.8888 1785.2633 31.9577
EN 0.4583 8698.9515 80.2166
RF 0.9590 659.1294 17.1609
PF 0.9798 299.7171 12.4878

P
D

S

LR 0.9466 815.3106 24.8321
EN 0.6677 5074.5676 54.2516
RF 0.9675 497.0161 17.0822
PF 0.9801 306.7420 13.5923

M
D

S

LR -5.0991 94986.9032 261.4205
EN -1.2370 34839.0509 155.6380
RF -3.9311 76797.2057 244.8166
PF -5.0991 94986.9032 261.4205

The single regression task is about identifying the
position of the damage on the cantilever along
the x axis. The models under investigation are
the LinearRegression, ElasticNet, RandomFore-
stRegressor, and PolynomialFeatures. All models
work with standard settings, except the Polynomi-
alFeatures. For the PolynomialFeatures an ideal
degree of 2 results from an evaluation of settings
between 1 ≤ neighbors ≤ 30. The baseline for
this is the mixed data set since this is the overall
goal. For both other data sets different degrees
perform better. The evaluation metrics R2 score,
mean squared error, and mean absolute error are
compared to the different machine learning mod-
els. In turn, these different models are again com-
pared to the machine learning model with the vir-
tual data set, the physical data set, and the mixed
data set.
Table 6 displaces the results for the evaluation of
the regression task. There is a general ranking
under the models that is equivalent to the virtual
and physical data set. The ElasticNet model per-
forms worst, while the PolynomialFeatures model
shows the best results. For both data sets the
model has an acceptable R2 score. Still, the

mean absolute error is not satisfying for an accurate prediction. Compared to the overall length
of the cantilever this results in a relative accuracy of 2 %. In other words, this would equal a classifi-
cation model with only 44 classes. Also, it is not promising to increase the data set size to decrease
the mean absolute error. The reason for this is, that the physical data set performs equally with a
much smaller data set size. Nevertheless, there is still room for improvement in both data sets. First,
the degree of the PolynomialFeatures was fitted to the mixed data set model, but not the virtual and
physical data set. Second, the data set could be increased with damage positions near or under a
sensor location. This would be an option for the virtual data set only, since generating data in the
physical domain for these positions would harm the sensors. Another relevant result is the perfor-
mance of the physical data set, since the results are overall better, except for the mean squared error
and the mean absolute error of the PolynomialFeatures model. For the mixed data set the investiga-
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Table 7 – Multi-output regression - Position and width of a
damage: R2 score (R2), mean squared error (MSE), and
mean absolute error (MAE) of the damage position and the
damage width for the LinearRegression (LR), RandomFore-
stRegressor (RFR), ExtraTreesRegressor (ETR), KNeigh-
borsRegressor (KNR), MultiOutputRegressor (MOR), and
RegressorChain (RC) from the virtual data set (VDS), physi-
cal data set (PDS), and the mixed data set (MDS).

Label R2 MSE MAE

V
D

S

LR
Position 0.8901 1562.6833 31.0280
Width 0.0758 0.9216 0.9120

RFR
Position 0.9501 710.3228 18.1043
Width -0.6363 1.6316 1.1163

ETR
Position 0.9537 658.1575 16.3872
Width -0.9639 1.9583 1.1512

KNR
Position 0.9598 571.8235 15.8567
Width -0.0698 1.0668 0.9339

MOR
Position 0.9456 773.0409 13.9146
Width -0.0429 1.0400 0.6716

RC
Position 0.9456 773.0409 13.9146
Width -0.3538 1.3500 0.9001

P
D

S

LR
Position 0.9791 365.2563 13.9495
Width -0.0261 1.0226 0.9047

RFR
Position 0.9737 460.2150 16.2195
Width -0.0757 1.0720 0.9506

ETR
Position 0.9923 134.2369 10.1623
Width -0.2842 1.2797 1.0176

KNR
Position 0.8915 1897.1567 33.4951
Width -0.3883 1.3835 1.1059

MOR
Position -0.0026 17538.1056 109.0731
Width 0.0220 0.9746 0.9847

RC
Position -0.0026 17538.1056 109.0731
Width -0.0099 1.0064 1.0024

M
D

S

LR
Position -5.0991 94986.9032 261.4205
Width -0.4983 1.4962 1.0432

RFR
Position -3.9437 76993.5066 244.3924
Width -0.0988 1.0973 1.0096

ETR
Position -3.7477 73940.2559 238.7111
Width -0.1233 1.1218 1.0024

KNR
Position -3.7936 74654.8991 242.4634
Width -0.0895 1.0880 1.0078

MOR
Position -4.0280 78305.4432 238.6889
Width -7.0134 8.0023 2.2701

RC
Position -4.0280 78305.4432 238.6889
Width -0.5413 1.5391 1.0676

tion failed. The failure is indicated
by the R2 score, which is negative
for every model. This means that
the model does not follow the trend
of the data [47]. Furthermore, the
mean squared errors are way too high.
An analysis of the virtual and physical
data shows that the characteristics di-
verge. This can be seen when com-
paring the strain over the damage po-
sitions. From these results, two main
outcomes are derived.
First, further investigation of the test
scenario is mandatory to exclude fail-
ures for the physical or virtual model.
Regarding the virtual model, there is
the possibility of natural non-linearity
that is not covered by the linear solver
and thus leads to a wrong virtual data
set. Moreover, the sharp edges of
the artificial damage can raise addi-
tional non-linearity the solver can not
handle. Last but not least, the miss-
ing virtual data near the clamp possi-
bly underlines the problems (see sec-
tion 5.). For the physical model, there
are even more possibilities that lead
to defects or inaccuracies in the data
set. E.g. these are the strain gauges,
the incremental measurement system,
and the artificial damage. The strain
gauges can have issues with the ap-
plication, wiring as well as deviations
in location and rotation. Most likely,
there are problems with artificial dam-
age. It possibly compresses or bends
under the load of the cantilever. This
also includes vertical or horizontal dis-
placements resulting from the linear
guides. Furthermore, the adjustment
of the exact height including some pre-
stressing force is challenging. Errors
from this stage can result in deviations
in the expected bending line of the
cantilever. Moreover, there are slight
differences between the physical and
the virtual model, like applied cables,
sensors, protections, and fixations on
the physical cantilever. These are not

covered in the virtual model.
Second, there is still a chance to improve the predictions towards a stable train on synthetic - test on
real approach. On the one hand, this is the main reason where domain adaptation comes in. Within
the domain adaptation discipline, several methods can be tested to improve the predictions. This can
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also include the development of a model that predicts the correlation between both data sets. On
the other hand, there is still the possibility to use neural networks that bring additional possibilities for
solving this problem.

6.3 Multi-Output Regression: Damage position and damage width
The multi-output regression task is about identifying the position and the width of the damage at
the same time. The models under investigation are the LinearRegression, RandomForestRegressor,
ExtraTreesRegressor, KNeighborsRegresso, MultiOutputRegressor, and MultiOutputRegressor. All
models work with standard settings, except the MultiOutputRegressor and MultiOutputRegressor.
Here the support vector regression is used with a radial basis function kernel, a kernel coefficient of
0.1, a regularization parameter of 100, and an epsilon(-tube) of 0.1. These are the baseline settings for
all three data sets. For this, there has been no hyperparameter study, yet. The evaluation metrics R2
score, mean squared error, and mean absolute error are compared to the different machine learning
models. In addition, the evaluation metrics further distinguish between both labels. In turn, these
different models are again compared to the machine learning model with the virtual data set, the
physical data set, and the mixed data set.
Table 7 shows the results for the evaluation of the multi-output regression task. In general, there is
a high variance between the different machine learning models within the different data sets. Fur-
thermore, the variance between the different evaluation metrics is partly high. When comparing the
virtual and the physical data set only one model guarantees equality, namely the LinearRegression
model. While the model has a slightly better R2 score for the virtual data set, the mean squared
error and the mean absolute error are much smaller for the physical data set. This is unusual, due
to the smaller data set size. Possible problems tend not to be on the physical data set but on the
virtual data set. An indicator for this is the mean squared error and the mean absolute error, which
are unreasonably high in comparison to the other models of the virtual data set. With a focus on the
R2 scores, there seems to be a strongly contrary behavior for the labels. While the quality of the
R2 score increases for the position, it decreases for the width. This characteristic is more present
for the virtual than for the physical data set. There is no clear answer to the question of the best
machine learning model for the virtual data set since each model has different advantages and dis-
advantages. If one needs to choose a specific machine learning model the recommendation would
be the MultiOutputRegresso model, because the mean absolute error for the position and width are
the lowest here. Nevertheless, this model does not show the best results for the mean squared er-
ror and especially the R2 score. Similar conclusions can be drawn for the physical data set but for
different machine learning models. The ExtraTreesRegressor performs best regarding the position
of the damage when looking at the mean absolute error. In contrast, it does not the best prediction
regarding the width of the damage. However, this is less decisive since the variance of the widths is
much smaller than the variance of the positions. Conspicuous are the models MultiOutputRegressor
and RegressorChain. While the results for the damage width are equal among the different models
and data sets, the damage position fails in all three evaluation metrics. A curious result is, that the
mean absolute error of the damage position is partly lower compared to the regression task from
subsection 6.2. Regarding the mixed data set the models show equal behavior like for the regression
task (see subsection 6.2 ). Thus, the resulting recommendations for action are the same as for the
single regression task, too. Finally, it is to point out that the multi-output regression seems to have
additional instabilities among all data sets.

7. Conclusion and outlook
The present paper introduces a methodology for the development of a train on synthetic - test on real
application. This methodology is both, a structure for this specific project, but also a valid method
for equal applications. Train on synthetic - test on real is a sub-category of transfer learning or more
precisely transductive transfer learning. It is also known as sim to real.
The approach is used for the strain-based damage detection of an aircraft wing. For this application
example a simplified test scenario is developed, to eliminate material and geometrical complexity.
This test scenario considers a bending beam with the possibility of applying an anomaly to the can-
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tilever. As an anomaly an artificial reversible crack-like damage is introduced, which is a support
trestle with a rectangular contact surface.
Following the test scenario splits into a physical and a virtual model. The physical model covers a
test stand with a clamped cantilever with applied strain gauges, and the artificial damage with an
incremental measurement. The virtual model consists of structural finite element model simulations.
Both models generate a corresponding data set. This data set includes the applied load on the
cantilever and the sensor values from the strain gauges as features as well as the damage position
and damage width as labels.
Besides a data pre-analysis, the data sets are used to train and test different machine learning
models. For this, the training takes place in three different stages, each covering a different discipline.
First, the existence of a damage is predicted with classification models. Second, the damage position
is predicted with regression models. Finally, the damage position and the damage width are predicted
with multi-output regression models. All these models are pre-trained with the physical and virtual
data set inside the corresponding domain. Afterwards, the virtual data set acts as a training data set,
while the physical data set acts as a testing data set, which results in a mixed data set.
The results for the classification task show a good performance, despite the small amount of un-
damaged cases in both data sets. Nevertheless, caution is advised, since some of the models run
into an error, because of a data splitting that excludes the weak represented class. Two remarkable
outcomes of this investigation are first, the high overall recall and second, the performance increase
of the mixed data set compared to each of the virtual and the physical data set.
For the regression task, the virtual and the physical data sets show acceptable results. Regardless
of the much smaller physical data set size, the results are comparable for two of the four investigated
models. For the two other models, there are deviations in the behavior of the different data sets. The
model with the mixed data set does not follow the data trend. Thus, the train on synthetic - test on
real approach does not show success for the prediction of the damage position.
Similar behavior is recognized for the multi-output regression. The models perform partly even better
in comparison to the (single) regression models when analyzing the mean absolute error of the virtual
and physical data set. As for the regression models, the prediction of the damage position and the
damage width show no success for the mixed data set, too.
There are multiple possible reasons for the unfulfilled train on synthetic - test on real approach for the
given test scenario. During the data pre-analysis deviations between the virtual and physical data
set has been recognised. These deviations are the most relevant reason for the instability of the
machine learning models. The physical data set consists of some discontinuities for the comparison
of the strain and the crack position. Yet, it is not clear whether the problem exists in the virtual or
physical domain.

Nevertheless, this outcome offers a chance for future work from different perspectives.
First, identifying the inaccuracy of either the virtual or the physical model. This includes further
investigations on both domains. Regarding the virtual model, a switch to a non-linear solver is an
option to calculate a possible non-linear bending line. In addition, this could solve the missing data
near the clamping, which itself could improve the performance of the models. For the physical model,
unrecognized inaccuracy can arise from the different measurements. Also, it could be that there is a
lack of accuracy for the artificial damage between both domains.
Second, there are still many different options to increase the performance of the prediction in the field
of machine learning. Since this was an initial investigation, no non-trivial domain adaptation methods
have been applied, yet. Furthermore, neural networks can be an option. These have extended
possibilities to find more complex correlations between the virtual and the physical data set.
Finally, as a result of the literature review the field of train on synthetic - test on real is a rising scientific
area with the potential for further research. This is especially the case for applications examples with
a background in structural health monitoring. This covers systematical literature reviews and further
experiments with other test scenarios.
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