Melching, David und Paysan, Florian und Strohmann, Tobias und Breitbarth, Eric (2024) An iterative crack tip correction algorithm discovered by physical deep symbolic regression. International Journal of Fatigue. Elsevier. doi: 10.1016/j.ijfatigue.2024.108432. ISSN 0142-1123.
PDF
- Verlagsversion (veröffentlichte Fassung)
5MB |
Kurzfassung
Digital image correlation is a widely used technique in the field of experimental mechanics. In fracture mechanics, determining the precise location of the crack tip is crucial. In this paper, we introduce a novel crack tip detection algorithm based on displacement and strain fields obtained by digital image correlation. Iterative crack tip correction formulas are discovered by applying deep symbolic regression guided by physical unit constraints to a dataset of simulated cracks under mode I, II and mixed-mode conditions with variable T-stress. For the training dataset, we fit the Williams series expansion with super-singular terms to the simulated displacement fields at randomly chosen origins around the actual crack tip. We analyse the discovered formulas and apply the most promising one to digital image correlation data obtained from uniaxial and biaxial fatigue crack growth experiments of AA2024-T3 sheet material. Throughout the experiments, the crack tip positions are reliably detected leading to improved stability of the crack propagation curves.
elib-URL des Eintrags: | https://elib.dlr.de/204973/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | An iterative crack tip correction algorithm discovered by physical deep symbolic regression | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 12 Juni 2024 | ||||||||||||||||||||
Erschienen in: | International Journal of Fatigue | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1016/j.ijfatigue.2024.108432 | ||||||||||||||||||||
Verlag: | Elsevier | ||||||||||||||||||||
ISSN: | 0142-1123 | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | deep symbolic regression; crack tip field; digital image correlation | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Luftfahrt | ||||||||||||||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||||||||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Strukturwerkstoffe und Bauweisen | ||||||||||||||||||||
Standort: | Köln-Porz | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Werkstoff-Forschung > Metallische und hybride Werkstoffe | ||||||||||||||||||||
Hinterlegt von: | Breitbarth, Eric | ||||||||||||||||||||
Hinterlegt am: | 05 Aug 2024 08:42 | ||||||||||||||||||||
Letzte Änderung: | 11 Nov 2024 14:22 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags