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A B S T R A C T

Digital image correlation is a widely used technique in the field of experimental mechanics. In fracture
mechanics, determining the precise location of the crack tip is crucial. In this paper, we introduce a novel
crack tip detection algorithm based on displacement and strain fields obtained by digital image correlation.
Iterative crack tip correction formulas are discovered by applying deep symbolic regression guided by physical
unit constraints to a dataset of simulated cracks under mode I, II and mixed-mode conditions with variable T-
stress. For the training dataset, we fit the Williams series expansion with super-singular terms to the simulated
displacement fields at randomly chosen origins around the actual crack tip. We analyse the discovered formulas
and apply the most promising one to digital image correlation data obtained from uniaxial and biaxial fatigue
crack growth experiments of AA2024-T3 sheet material. Throughout the experiments, the crack tip positions
are reliably detected leading to improved stability of the crack propagation curves.
1. Introduction

Digital Image Correlation (DIC) is an important tool for inves-
tigating crack tip fields in experimental fracture mechanics [1–3].
Integrated into experiments, this technique can generate large data
sets to investigate features such as stress intensity factors [4–6], crack
propagation laws [7,8], the crack tip plastic zone [9,10] or crack
closure [11,12]. Precise information on the coordinates and orientation
of the crack tip is essential for quantitative evaluation of each data set.
Computer vision techniques are effective for analysing cracks on metal
surfaces [13,14]. However, DIC requires a stochastic speckle pattern,
making such techniques inapplicable. The precise identification of the
crack path, particularly the crack tip within the strain and displacement
field data, is the major challenge.

In linear-elastic fracture mechanics, the stress and displacement
fields induced by a single open crack with traction-free crack faces
can be described in polar coordinates (𝑟, 𝜃) by the Williams series
expansion [15]:

𝜎𝑖𝑗 (𝑟, 𝜃) =
∑

𝑛
𝑟
𝑛
2−1

(

𝐴𝑛𝑓I,𝑖𝑗 (𝜃, 𝑛) + 𝐵𝑛𝑓II,𝑖𝑗 (𝜃, 𝑛)
)

, (1)

𝑢𝑖(𝑟, 𝜃) =
∑

𝑛

𝑟
𝑛
2

2𝜇
(

𝐴𝑛𝑔I,𝑖(𝜃, 𝑛) + 𝐵𝑛𝑔II,𝑖(𝜃, 𝑛)
)

. (2)

The parameters 𝐴𝑛, 𝐵𝑛 ∈ R are called Williams coefficients and depend
on the crack tip loading conditions. The trigonometric functions 𝑓 and
𝑔 are known. First order terms are proportional to the stress intensity
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factors as 𝐾I =
√

2𝜋 ⋅ 𝐴1, 𝐾II = −
√

2𝜋 ⋅ 𝐵1 and one second order term
to the 𝑇 -stress via 𝑇 = 4 ⋅ 𝐴2.

Crack tip detection.
There are several approaches for detecting cracks in DIC data.

Lopez-Crespo et al. [16] applied a Sobel line detection algorithm to
the vertical displacement field to locate the crack tip. The crack tip
position can also be determined by using a least-squares fitting of the
truncated Williams’ expansion and including the crack tip coordinates
in the feature set [17]. Yang et al. [18] followed a similar approach,
but excluded the plastic zone. By incorporating negative Williams series
terms, also known as super-singular terms, Réthoré [19] derived the
iterative Formula (3) for the correction 𝑑𝑥 parallel to the crack to find
the exact position of the crack tip under pure mode I loading.

𝑑𝑥 = −2 ⋅
𝐴−1
𝐴1

(3)

Following this formula, after some iterations 𝐴−1 tends to zero. This
approach is constrained to a given crack plane and an initial esti-
mate for the crack tip is required. Baldi and Santucci [20] built upon
Réthoré’s [19] approach and discovered that 𝐴−1 and 𝐵−1 exhibit linear
behaviour around the crack tip and use two planes to detect it at 𝐴−1 =
𝐵−1 = 0. Cinar et al. [21] proposed a new phase congruency based
algorithm to automatically segment cracks and extract their quantifying
parameters such as crack path, length and opening displacement. To
vailable online 11 June 2024
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Fig. 1. Left: Finite element model with crack and boundary conditions. Right: Random sample point for training of symbolic regression together with the corresponding target
correction vector (𝑑𝑥 , 𝑑𝑦) (in white) and angular Williams fitting domain (in gray). The background shows the von Mises eqv. stress for the boundary conditions 𝜎𝑥𝑥 = −10MPa,
𝜎𝑦𝑦 = 20MPa, 𝜏𝑥𝑦 = 0MPa.
address the problem of noisy displacement data, Gupta et al. [22]
introduced a separability approach that uses the multiplicative sepa-
rability of the asymptotic stress field. Zanganeh et al. [23] performed
a comparative study of different optimization methods to identify the
crack tip in displacement data by fitting of the Williams series. Further
work by Bonniot et al. [24] coupled a grid search algorithm [25] for an
initial guess on a coarse grid evaluation with the pattern search method
for an iterative detection of the crack tip location. Shuai et al. [26]
first determine the plastic zone. Then two symmetrical lines are defined
on both sides of the crack. The theoretical displacement difference
between the two lines is analysed to estimate the crack tip position.
Similarly, Broggi et al. [27] used a technique to determine the effective
length of a crack by analysing crack opening displacement (COD)
profiles obtained from displacement fields. Gehri et al. [28] introduced
a method to detect multiple cracks using the DIC principal tensile strain
field. The method is capable of detecting complex crack paths including
branching and bifurcation but is affected by the spatial resolution of
DIC as well as inherent scatter, noise and artefacts. Panwitt et al. [29]
extended this method to determine the position of the tips by using
the crack opening. Feld-Payet et al. [30] developed a criterion that
allows for the estimation of the crack path and tips location, even in
case of large plastic deformations. To overcome the general problem
of artefacts and scatter in DIC data, Strohmann et al. [31] developed
a machine learning model based on a U-Net architecture, which was
trained to accurately detect both the crack path and crack tip using
full-field DIC displacement data. Melching et al. [32] combined this U-
Net model at its deepest layer with a fully connected neural network
and demonstrated the use of explainable AI for selecting models which
generalize well.

Symbolic regression.
Although effective, machine learning models can lack transparency,

which is problematic for certain applications or when applied to new
categories of data. Consequently, efficient analytical formulas and al-
gorithms are preferred [33]. Symbolic regression is a machine learning
methodology that seeks to automatically identify formulas representing
correlations in a given data set [34]. By applying the Buckingham-Pi
theorem, these methods can even consider physical units to derive an-
alytical physical formulas by exploring the space of available functional
forms [35].

Our work.
2

In this work, we use symbolic regression to discover crack tip cor-
rection formulas based on Williams series coefficients. Our preliminary
numerical studies have shown that the energy landscape gradients near
the crack tip vanish, making it difficult to determine the crack tip po-
sition accurately. To address the stated limitations, Physical Symbolic
Optimization (𝛷-SO) [35] is utilized to identify formulas for efficient
crack tip correction in the 𝑥- and 𝑦- directions for mode I, II, and mixed-
mode loading scenarios. Initially, we create a finite element (FE) model
and run linear-elastic simulations with exact knowledge of the crack tip
position under several external loading scenarios. Then, we calculate
the Williams coefficients at various randomly chosen positions around
the actual crack tip using the over-deterministic fitting method [36]
implemented in CrackPy [37]. The resulting data set is used to learn
correction formulas for 𝑑𝑥 and 𝑑𝑦 using the physical deep symbolic
regression tool 𝛷-SO. Among the discovered Pareto formulas, we select
the one that exhibits wide applicability among different load cases
and optimal convergence properties. Finally, we apply an this formula
to multiscale DIC data obtained from uniaxial and biaxial fatigue
crack propagation experiments. To estimate the crack tip initially,
we introduce a line interception method based on the characteristic
displacement gradients near the crack path.

2. Methodology

2.1. Training data

To generate the training data set, we parameterized a 2D FE model
using pyansys [38]. Fig. 1 illustrates the single edge notched model’s
geometry and boundary conditions. The sheet has a quadratic shape of
𝑤 × ℎ = 100 × 100mm2 with a crack length 𝑎 = 50mm, i.e. 𝑎∕𝑤 = 0.5,
ensuring symmetry within the model. We used a structured mapped
mesh of rectangular 4-node elements (PLANE182) with an element
edge length of 0.2mm and plane stress formulation. This is a suitable
element size for evaluating the Williams coefficients [39]. Although lin-
ear elements are used, the Williams fitting results converge indicating
a reasonable representation of the crack tip field, at least away from
the crack tip singularity. Our model consists of 250,000 elements and
251,251 nodes. We used a linear elastic material formulation with a
Young’s modulus 𝐸 = 72GPa and a Poisson’s ratio 𝜈𝑥𝑦 = 0.33, which
is typical for aluminium alloys. The model was fixed in the centre of
the coordinate system using displacement boundary conditions. This
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model allows the application of defined boundary conditions so that
the stress intensity factors 𝐾I and 𝐾II are directly related to 𝜎𝑦𝑦 and
𝑥𝑦, respectively. However, 𝜎𝑥𝑥 and 𝜎𝑦𝑦 affect the 𝑇 -stress. According
o the given boundary conditions, we can linearly approximate 𝐾I ≈
.184 ⋅ 𝜎𝑦𝑦

√

m, 𝐾II ≈ 0.541 ⋅ 𝜎𝑥𝑦
√

m, and 𝑇 ≈ 𝜎𝑥𝑥 + 0.658 ⋅ 𝜎𝑦𝑦. The
results were exported as tabular data containing the nodal coordinates,
displacements and the total strains.

2.2. Data generation

Using the model in Section 2.1, we generate several FE simulations
by varying the boundary conditions 𝜎𝑥𝑥, 𝜎𝑦𝑦, and 𝜎𝑥𝑦. Since we use
a linear-elastic model, only few combinations of boundary conditions
are necessary to achieve a sufficiently large variation. The choice of
boundary conditions is as follows:

• 𝜎𝑥𝑥 ∈ {−10.0, 0.0, 10.0}
• 𝜎𝑦𝑦 ∈ {0.0, 10.0, 20.0}
• 𝜎𝑥𝑦 ∈ {−10.0, 0.0, 10.0}

Excluding the trivial case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑦𝑦 = 0, this set of boundary
onditions results in 26 FE simulations encompassing pure mode I,
ode II, and mixed-mode scenarios.

The left-hand side of Fig. 1 shows the FE model together with the
ubdomain of the possible crack tip estimates. The right-hand side
llustrates the correction scheme. At a randomly chosen point of the
ubdomain, we fit the Williams series expansion to the displacement
ield using an angular fitting domain.

For every FE simulation, we randomly choose 1000 points from a
× 6mm2 subdomain around the actual crack tip and fit the Williams

eries expansion to the FE data at these points. This subdomain can
e interpreted as region of possible crack tip estimation. We consider
he size of this domain to be appropriate, as we can also estimate the
rack tip with comparable accuracy in an experiment. Consequently,
he whole data set consists of 26 × 1000 = 26 000 samples usable for
raining the symbolic regression model.

Heading for iterative crack tip correction, we effectively treat these
andom points as our current estimate for the crack tip position. It
hould be noted that the Williams series coefficients can be calcu-
ated even if the origin, i.e. the estimated crack tip position, is not
ligned with the actual crack tip position. To calculate the Williams
eries coefficients at each of these random points, we use the over-
eterministic fitting method [36] implemented in CrackPy [37] version
.2.0 (https://github.com/dlr-wf/crackpy/).

In general, the larger the fitting domain around the crack tip, the
ore higher order Williams coefficients are needed to accurately fit

he crack tip field. Furthermore, since the linear elastic simulation
s not sufficiently accurate near the crack tip singularity, the fitting
omain should be located at a considerable distance from the crack
ip. Therefore, guided by [19], we use an angular fitting domain with
missing segment of 𝛼 = 45 ◦ around the crack path, an internal radius
f 𝑟min = 5mm external radius 𝑟max = 10mm. The interpolation tick size
or the fitting domain is set to 0.25mm and the terms −3 ⩽ 𝑛 ⩽ 7 of

the Williams series expansion were chosen as free parameters for 𝐴𝑛
nd 𝐵𝑛, resulting in 22 parameters for each sample point. Additionally,
or each sample point, we know the ground truth correction vector
omponents 𝑑𝑥, 𝑑𝑦.

.3. Physical symbolic regression

Our aim is to find an analytical formula for crack tip correction
epending on the Williams coefficients data introduced in Section 2.2.
his approach should effectively generalize the iterative correction
ormula (3) by Rethoré [19] to correct also in 𝑦-direction and be

applicable to more general load cases. To achieve this, we employ
3

Table 1
Training settings for 𝛷-SO.

Parameters Value

Operators mul, add, sub, div, abs, inv, n2, neg, exp, log
Fixed constants 1, 2, 4
Free constants 𝑘 [1], 𝑚 [mm], 𝑛 [N]
Reward function SquashedNRMSE
Input 𝐴𝑛, 𝐵𝑛 with −3 ⩽ 𝑛 ⩽ 7
Target 𝑑𝑥, 𝑑𝑦
Batch size 1000
Epochs 1000

the symbolic regression framework Physical Symbolic Optimization (𝛷-
O) as introduced by Tenachi et al. [35]. This framework is based on
eep symbolic regression [40] and is implemented in Python (https:
/github.com/WassimTenachi/PhySO). It can be used to identify an-
lytical formulas from (noisy) data taking physical unit constraints
nto account during the equation generation process. This approach
rastically reduces the (exponentially large) search space. To this end,
e first define the base units of the Williams coefficients. For every 𝑛,

he units of the Williams coefficients 𝐴𝑛 and 𝐵𝑛 are given by [41]:

Pa mm1−𝑛∕2 = N
mm2

mm1−𝑛∕2 = N mm−1−𝑛∕2 (4)

We conduct six distinct training runs to derive formulas for 𝑑𝑥 and
𝑑𝑦 for mode I, mode II and mixed-mode loading conditions. The aim is
to find a formula for the correction vector that leads from a random
starting point to the known crack tip position. We include standard
mathematical operators, while excluding trigonometric functions since
no periodicity is expected. We allow the candidate functions to contain
learnable free constants (𝑘, 𝑚, 𝑛) with fixed units to cover situations,
where the problem has unknown physical scales, as well as the fixed
constants 1, 2, and 4. 𝛷-SO generates and evaluates batches of symbolic
unctions with a recurrent neural network, improving them over time
y reinforcing high-reward behaviours. This process helps the network
o learn parameters that produce effective symbolic functions. The
esult is a Pareto front showing the most accurate expression based
n the root mean squared error (RMSE) between crack tip correction
redictions and targets for each level of formula complexity. The
yperparameters are equal for all training runs and summarized in
able 1.

. Results and discussion

We use the Williams coefficients data set described in Section 2.2
o train crack tip correction models using Physical Symbolic Opti-
ization (see Section 2.3. Each training run is performed with the
yperparameters given in Table 1 but the data varied as follows:

• Mode I: All boundary conditions except if 𝜎𝑥𝑦 ≠ 0 or 𝜎𝑦𝑦 = 0
• Mode II: All boundary conditions except if 𝜎𝑥𝑦 = 0 or 𝜎𝑦𝑦 ≠ 0
• Mixed-mode: All boundary conditions

Since 𝛷-SO only allows to train scalar functions, the correction
formulas in 𝑥- and 𝑦-direction are learned separately. For each run, we
receive a Pareto front of crack tip correction formulas with minimal
root mean-squared error (RMSE) loss given a mathematical complexity.
Fig. 2 shows these Pareto fronts for the 𝑥- and 𝑦-correction.

Because of Pareto optimality, the RMSE decreases with increasing
formula complexity. For mode I and mode II the RMSE decreases until
a saturation is reached around a complexity of 6–8 with an RMSE of
0.25–0.5mm for both, the 𝑥- and 𝑦-correction, respectively. However,
for the mixed-mode case, higher losses remain. This indicates that a
simple closed formula, which works for arbitrary mixed-mode load
cases might not exist. Representative formulas are shown in Tables 2–
4. Since the Pareto front contains many similar, repetitive formulas, we

only display a selection here.

https://github.com/dlr-wf/crackpy/
https://github.com/WassimTenachi/PhySO
https://github.com/WassimTenachi/PhySO
https://github.com/WassimTenachi/PhySO
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Fig. 2. Pareto fronts for different training sets. Left: 𝑥-correction. Right: 𝑦-correction. The numbers correspond to the #-column in Tables 2–4.
Table 2
Mode I correction formulas on Pareto front.

# Complexity Reward RMSE Equation

0 4 0.66272 0.89169 − 𝐴−1

𝐴1

𝑑𝑥 1 5 0.82885 0.36178 − 1.90537𝐴−1

𝐴1

12 20 0.91267 0.16766 −0.00193 mm − 0.00276𝐴−2 mm
N

− 2.08617𝐴−1

𝐴1

0 4 0.61570 1.09381 − 𝐵−1

𝐴1

𝑑𝑦 1 5 0.82705 0.36646 − 2.50796𝐵−1

𝐴1

6 13 0.96146 0.07025 9.78182𝐵1 mm−1.66341𝐵−1

𝐴1

Table 3
Mode II correction formulas on Pareto front.

# Complexity Reward RMSE Equation

0 4 0.57814 1.27848 − 𝐵−1

𝐵1

𝑑𝑥 4 8 0.78389 0.48304 17.06448 mm − 0.12296𝐵2
1

𝐵2
2

10 18 0.84853 0.31276 − 2.43992𝐵−1

𝐵1
+ 0.27118𝐵−2

𝐵2 mm

0 4 0.59518 1.19191 − 𝐴−1

𝐵1

𝑑𝑦 1 5 0.73554 0.63006 − 2.62186𝐴−1

𝐵1

2 6 0.86479 0.27400 − 2.29023𝐴−3

𝐵1 mm

9 19 0.88148 0.23561 − 2.19136𝐴7𝐴−3 mm2

𝐵2
1

Table 4
Mixed-mode correction formulas on Pareto front.

# Complexity Reward RMSE Equation

2 6 0.56735 1.33602 − 𝐴−1

𝐴1+𝐵1

𝑑𝑥 4 9 0.61716 1.08681 − 0.00735𝐴−1

𝐴1

11 18 0.64105 0.98101 0.0429𝐴1𝐴−1

𝐴3 ⋅(2.88427𝐴1 mm−𝐴−1)

2 6 0.56391 1.35510 − 𝐵−1

𝐴1+𝐵1

𝑑𝑦 4 12 0.59954 1.17044 − 0.0001𝐵−1

𝐴1

8 18 0.62042 1.07207 0.02276𝐵−1

𝐴3 mm

For mode I, we find formulas of the form

𝑑𝑥 = −𝑐I𝑥
𝐴−1
𝐴1

, 𝑑𝑦 = −𝑐I𝑦
𝐵−1
𝐴1

, (5)

with constants 𝑐I𝑥, 𝑐
I
𝑦 > 0. With Formula #1 in Table 2, we effectively

rediscover the iterative crack tip correction algorithm proposed by
Rethoré [19] with 𝑐 = 2 (cf. Eq. (3)). In addition, Formula #1 in
4

𝑥

Table 2 suggests that for the mode I case a constant 𝑐𝑦 = 5∕2 works
best for an iterative crack tip correction in 𝑦-direction.

For mode II, the symbolic regression model discovers formulas with
low complexity of the form

𝑑𝑥 = −𝑐II𝑥
𝐵−1
𝐵1

, 𝑑𝑦 = −𝑐II𝑦
𝐴−1
𝐵1

, (6)

with constants 𝑐II𝑥 , 𝑐
II
𝑦 > 0, whereas the more complex formulas with

a smaller error contain higher order terms as well. Although getting
closer to the crack tip in only one step, these more complex expres-
sions often only work for the specific load case or fail when applied
iteratively (see Appendix).

For mixed-mode, we discover the formulas

𝑑𝑥 = −
𝐴−1

𝐴1 + 𝐵1
and 𝑑𝑦 = −

𝐵−1
𝐴1 + 𝐵1

(7)

which do not contain unit constants and are very similar to the mode I
and mode II formulas above. The denominator 𝐴1+𝐵1 solves the prob-
lem of vanishing 𝐴1 or 𝐵1 and the corresponding division by zero in
Eqs. (5) and (6) for pure mode I or mode II, respectively. Nevertheless,
we will see that these equations still do not work in all scenarios and
distinction between mode-I-dominated and mode-II-dominated load
cases is necessary when applying the crack tip correction (see Sec-
tion 4). We remark that for pure mode I loadings, 𝐵1 = 0 and thus
Formula (7) equals Formula (5). The formulas revealed highlight the
advantages of symbolic regression, as only the most important vari-
ables are determined. In particular, higher order terms were omitted
for plausibility reasons, as their determination becomes increasingly
unstable at higher orders with the over-deterministic method. From a
set of 22 potential parameters, 𝐴1, 𝐴−1, 𝐵1 and 𝐵−1 proved to be the
most important.

3.1. Correction vector fields

For a better understanding of the highlighted formulas, this section
will concentrate on the correction vectors at various estimated crack
tip positions. All constants 𝑐I𝑥, 𝑐I𝑦, 𝑐II𝑥 , 𝑐II𝑦 are set to 1, as they are
only identified as scale factors and do not affect the general behaviour
significantly. Tracing the vector field from a random starting point
should iteratively lead to the actual position of the crack tip at 𝑥 =
𝑦 = 0. According to the chosen training data, we select a starting point
range, interpretable as initial crack tip estimation, of −3mm < 𝑥, 𝑦 <
3mm.

Fig. 3 illustrates that all correction vectors point inwards in the
direction of the crack tip showing that Formula (5) works well under
mode I and mixed-mode loadings. However, the mode I formulas do
not work for the pure mode II case (see Appendix).
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Fig. 3. Correction vectors using the mode I formula (5) with 𝑐I𝑥 = 𝑐I𝑦 = 1 for the mode I load case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 10, 𝜎𝑥𝑦 = 0 [MPa] (left) and the mixed-mode load case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10
[MPa] (right).
On the other hand, Fig. 4 shows the vector fields for a pure mode
II and a mixed-mode load case using the mode II correction formulas
(6). We see that the correction vector field for the pure mode II case
forms a field driving the iterative correction towards the actual crack
tip, while this is not the case for the mixed-mode loading.

In Fig. 5, we plotted the vector fields for the same load examples
using Formula (7) discovered by the symbolic regression model trained
on all load cases (mode I, mode II, mixed-mode). For pure mode I,
Formula (7) becomes Formula (5) with 𝑐I𝑥 = 𝑐I𝑦 = 1 and the plot
therefore corresponds to the left-hand side of Fig. 3. For the pure
mode II example on the left-hand side of Fig. 5, we observe that the
vectors point in the direction of the crack tip only close to the diagonal
(𝑥 ≈ 𝑦) but away from the crack tip close to the anti-diagonal (𝑥 ≈ −𝑦)
suggesting that for initial crack tip estimates in this area the correction
will lead away from the crack tip and diverge. For the mixed-mode
example on the right-hand side, some vectors point towards the crack
tip, however, especially for 𝑥 > 0, 𝑦 > 0, the correction vectors point
away from the real crack tip. This indicates that the use of this formula
for iterative correction might cause convergence issues as well.

We conclude that Formula (5) works under mode I as well as mode-
I-dominated mixed-mode scenarios, whereas Formula (6) only works
for pure mode II loadings. Although Formula (7) looks promising,
considering the correction vector fields above, we expect that it does
not lead to improved results compared to Formula (5).

The correction vector fields for additional pairs of formulas discov-
ered by 𝛷-SO in Tables 2–4, can be found in Appendix.

3.2. Convergence of iterative correction

In this section, we study the convergence when iterating the discov-
ered crack tip correction formulas until the iteration step size

√

𝑑2𝑥 + 𝑑2𝑦
reaches a certain threshold 𝛿 > 0. Here, we choose 𝛿 = 10−3.

In Section 3.1, we find that Formula (5) is most promising for
iterative application in all mode-I-dominated load cases. More complex
formulas in Tables 2 and 3 have a smaller RMSE meaning that on
average they get closer to the crack tip in a single iteration step.
However, many of these formulas are unfeasible for iterative appli-
cation or only work for specific load cases. Therefore, we only show
the convergence of the iterative correction using Formula (5) here.
However, the iterative behaviour of all pairs of formulas discovered
by 𝛷-SO in Tables 2–4, is available on Zenodo (see Data Availability).

In Fig. 6, we apply iterative correction using the mode I formula
(5) with 𝑐I𝑥 = 𝑐I𝑦 = 1. Figs. 6(a) and 6(b) show the iteration steps and
the final corrections. As shown in Figs. 6(c) and 6(d), the algorithm
converges under both load cases in a very stable way with 𝐴 and 𝐵
5

−1 −1
tending to zero accordingly. The correction takes 8 and 15 iterations to
converge to the threshold of 𝛿 < 10−3 for the mode I and mixed-mode
example, respectively. In case of FE data, we know the actual crack tip
position at 𝑥 = 𝑦 = 0 and can compare it with the final correction.
The RMSE of correction is 0.047mm and 0.058mm, respectively, which
is significantly smaller than the mesh size of the FE model.

4. Application to experimental data

To show the effectiveness of our method, we apply the discovered
crack tip correction formulas to experimental DIC data of growing
fatigue cracks captured by two independent optical systems acquiring
global full-field and local high-resolution DIC, respectively. The exper-
iments differ in specimen geometry and loading conditions. The tested
material in both cases is the aluminium alloy AA2024-T3.

1. Uniaxial testing of AA2024-T3 sheet material
Fatigue crack growth experiments of middle tension MT160
specimen of AA2024-T3 were conducted according to ASTM
E647-15 [42]. The basis is a servo-hydraulic testing machine
for the sinusoidal fatigue loading with constant amplitude. The
maximum load and load ratio were set to 𝐹 = 15 kN and 𝑅 = 0.1,
respectively. DIC measurements were performed on both sides
of the sheet specimen. On one side, a 3D DIC system captures
the displacements of the entire surface with a spatial resolu-
tion (i.e. facet distance) of 0.59mm. On the other side of the
specimen, the testing system is equipped with a robot-assisted
high-resolution 2D DIC system. It consists of a KUKA LBR iiwa
that guides a Zeiss 206C light optical microscope including a
Basler a2A5320-23umPro global shutter 16 Megapixel CMOS
camera. It allows the measurement of high resolution DIC dis-
placement fields with a spatial resolution of 0.06 mm of the crack
tip region throughout the experiment. A detailed description of
the test set up including all algorithms for ensuring good DIC
measurement quality is presented by Paysan et al. [43].

2. Biaxial testing of AA2024-T3 sheet material
According to the experimental setup described in [44], a biaxial
cyclic load of 𝐹max = 45 kN and 𝐹min = 4.5 kN, i.e. 𝑅 = 0.1, was
applied simultaneously in both directions, i.e. the axis perpen-
dicular to the crack predominantly defines the mode I loading
condition and the axis parallel to the crack growth direction
implying T-stress. The crack growth direction, therefore, was
perpendicular to the rolling direction of the sheet. The specimen
has a thickness of 2.03mm and a test field of 420 × 420mm2.
We used the combination of the GOM Aramis 12M DIC system
and a robotic arm carrying a light optical microscope similar to
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Fig. 4. Correction vectors using the mode II formula (6) with 𝑐II𝑥 = 𝑐II𝑦 = 1 for the mode II load case 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 10, 𝜎𝑦𝑦 = 0 [MPa] (left) and the mixed-mode load case
𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10 [MPa] (right).
Fig. 5. Correction vectors using the mixed-mode formulas (7) for the mode II load case 𝜎𝑥𝑥 = 𝜎𝑥𝑦 = 10, 𝜎𝑦𝑦 = 0 [MPa] (left) and the mixed-mode load case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10
[MPa] (right).
the uniaxial tests. However, both systems monitored the same
side of the specimen due to constructional restrictions of the
biaxial test rig. The 3D DIC system was focused on a measuring
volume of ≈500 × 380mm2, yielding a spatial resolution of ≈8 ×
8 pixels∕mm2. The light optical microscope was focussed on a
field of view of 28.96 × 16.5mm2, allowing a spatial resolution
of ≈183 × 183 pixels∕mm2 using the full camera sensor.

4.1. Line interception method

For experimental data obtained by DIC, the challenge of locating
an initial starting point for the iterative crack tip correction remains.
In addition, the orientation of the crack must be correctly estimated,
as the correction formula can only correct the translation, but not the
rotation. In this paper, we detect the approximate crack path by fitting
a tanh-function to the 𝑦-displacement on vertical slices perpendicular
the expected crack. We call this line interception method (LIM).

The implemented LIM builds on displacement gradients perpendicu-
lar to the crack path and is mostly insensitive to local scatter. According
to Fig. 7, we define parallel, equidistant, vertical slices. These slices
are roughly perpendicular to the crack path. We interpolate the 𝑦-
displacement onto these slices. When subject to maximum loads, an
open crack leads to a steep jump in the 𝑦-displacement. This charac-
teristic jump is fitted using a tanh ansatz function, as defined in the
6

following Eq. (8). For each slice 𝑆𝑥,

𝑢𝑦(𝑥, 𝑦) = 𝐴(𝑥) ⋅ tanh ((𝑦 − 𝐵(𝑥)) ⋅ 𝐶(𝑥)) +𝐷(𝑥) ⋅ 𝑦 + 𝐸(𝑥) (8)

For a fixed slice 𝑆𝑥, 𝐴(𝑥) relates to the distance between the faces
of the crack. 𝐵(𝑥) is the midpoint between the crack faces, and it is the
quantity of interest. 𝐶(𝑥) adjusts the slope of the curve. 𝐷(𝑥) describes
the linear deformation of the base material, whereas 𝐸(𝑥) represents a
constant offset indicating a rigid-body displacement.

The crack path is reconstructed by plotting 𝐵(𝑥) over 𝑥. However,
the gradient 𝐶(𝑥) vanishes as the crack tip is approached. Therefore,
it is challenging to find the exact crack tip position with this method.
We map the equivalent strain onto the reconstructed crack path. By
searching for the point, where the strain exceeds a previously defined
threshold, we can roughly estimate the crack tip position. Fig. 7 also
shows that the method becomes unstable when a crack is no longer
present in the vertical slice 𝑆𝑥.

The crack angle is calculated by fitting a line to the LIM-detected
crack path ahead of the tip. For this, only the path close to the crack
tip should be taken into account. To this end, an angle estimation radius
needs to be defined. For Fig. 7, an angle estimation radius of 5mm was
used.

We use this approximate crack tip position to initialize the iterative
crack tip correction formula and the detected crack angle to correct
the crack orientation. It should be noted that any other method to
detect the crack path and tip, for instance the machine learning models
from [31,32], could be used to get an initial guess as well.
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Fig. 6. Iterative correction using the mode I formula (5) with 𝑐I𝑥 = 𝑐I𝑦 = 1. Top: von Mises eqv. strain with crack tip correction iterations. Bottom: Convergence of 𝑑𝑥 , 𝑑𝑦 and
𝐴−1 , 𝐵−1 to zero. Left: For the mode I load case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 10, 𝜎𝑥𝑦 = 0 MPa. Right: For the mixed-mode load case 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10 MPa.

Fig. 7. Line interception method (LIM) applied to DIC data. Left: von Mises eqv. strain with estimated crack path and crack tip. Vertical slices 𝑆𝑥 at 𝑥 ≈ 35 mm (blue) and
𝑥 ≈ 50 mm (red). Right: 𝑦-displacements on these slices overlayed with the fitted tanh ansatz function (dashed).
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Fig. 8. Iterative correction for experimental high-resolution DIC data using the mode I formula (5) with 𝑐I𝑥 = 𝑐I𝑦 = 1. Top: von Mises eqv. strain with crack tip correction iterations.
Bottom: Convergence of 𝑑𝑥 , 𝑑𝑦 and 𝐴−1 , 𝐵−1 to zero. Left: Uniaxial test. Right: Biaxial test.

Fig. 9. Comparison of crack tip prediction stability between line interception method (LIM) introduced in Section 4.1 and correction using our discovered iterative crack tip
correction formula (5). Left: Uniaxial test of AA2024-T3 sheet material. Right: Biaxial test of AA2024-T3 sheet material (see Section 4)
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Fig. 10. Correction vectors using the mode I formula (5) with 𝑐I𝑥 = 2 and 𝑐I𝑦 = 3∕2 for 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 10, 𝜎𝑥𝑦 = 0 [MPa] (left) and 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10 [MPa] (right).
Fig. 11. Correction vectors using the mode I formulas #12 and #6 for 𝑑𝑥 and 𝑑𝑦, respectively, for 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 10, 𝜎𝑥𝑦 = 0 [MPa] (left) and 𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 𝜎𝑥𝑦 = 10 [MPa] (right).
Fig. 12. Correction vectors using the mode I Formula (5) with 𝑐I𝑥 = 1 and 𝑐I𝑦 = 1 for
𝜎𝑥𝑥 = 𝜎𝑦𝑦 = 0, 𝜎𝑥𝑦 = 10 [MPa].
9

4.2. Iterative correction for high-resolution DIC

The challenging character of experimental data instead of simulated
ideal solutions can be seen in Fig. 8. The figure shows the iterative
application of correction Formula (5) on experimental high-resolution
DIC data for one representative time step (crack length) for maximum
load during uniaxial (Fig. 8(a)) and biaxial (Fig. 8(b)) fatigue crack
growth experiments, respectively. Along with the inherent scatter,
especially high-resolution DIC data provide more challenges for crack
tip detection. First, the plastic wake surrounds the crack path with even
small branch-like features (see Fig. 8(a)). Secondly, the DIC system does
not necessarily know that a crack exists, thus calculating unphysically
large strain artefacts very close to the crack path. Third, the crack path
can be arbitrarily complex making it difficult to define a single value
for the crack angle.

Although the LIM provides very realistic initial positions for the
crack tip, the iterative correction method is preferred because it uses
physical knowledge (i.e. the crack tip field) rather than relying solely
on raw DIC data. Therefore, we expect 𝐴−1 = 𝐵−1 = 0 when calculating
the Williams terms for the true crack tip position as shown by validating
the correction method using FE data (see Section 3.2).

It is necessary for the Williams series that the fitting domain does
not overlap with the plastic zone surrounding the crack tip in order to
accurately describe the crack tip field. However, the microscope only
provides data for a small area around the crack tip, which means that
it is not possible to place the fitting domain arbitrarily far away from
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I I
Fig. 13. Iterative correction at different crack lengths for full-field 3D-DIC data of uniaxial fatigue crack growth experiment using the mode I Formula (5) with 𝑐𝑥 = 𝑐𝑦 = 1.
the plastic zone in order to neglect its influence. We have found that
the following choices for the fitting domain seem to work well.

For the uniaxial case, we choose 𝛼 = 45◦, 𝑟min = 1mm, 𝑟max = 2mm,
and a tick size of 0.02mm for the fitting domain. For the biaxial case,
we choose the same tick size and 𝛼, but move further away from the
crack tip (𝑟min = 2mm, 𝑟max = 4mm). In Figs. 8(c) and 8(d), the
method converges after 10–15 iterations with 𝐴−1 and 𝐵−1 tending
to zero in both experiments. This confirms the thesis of Baldi and
Santucci [20]. While the corrected crack tip position for the uniaxial
example is consistent with physical intuition, this does not appear to be
the case for the biaxial example. Reasons for this could be bifurcation,
crack tunnelling, or shear lips in 𝑧-direction. Moreover, fitting partly
takes place in the plastically deformed area of the crack tip. This
is theoretically not permissible, as the Williams series is based on
linear-elastic fracture mechanics. Thus, the individual results of the
Williams coefficients might not accurately reflect the correct crack tip
loading condition. However, the results in Fig. 8 show that the iterative
correction still converges. This illustrates the great potential of the
method for use in high-resolution DIC investigations.

4.3. Improved stability

From a fatigue and lifetime perspective, one is interested in quanti-
fying crack propagation in terms of the crack growth per cycle, 𝛥𝑎∕𝛥𝑁 ,
or incrementally d𝑎∕d𝑁 , with respect to the cyclic stress intensity
factor. Measuring the exact crack growth rate by either integral meth-
ods such as direct current potential drop or using optical methods
can be very challenging since small errors may have a high impact
when derivatives are calculated. Typically, results must be averaged
to smooth the curves.
10
In Fig. 9, we compare the crack growth rates 𝛥𝑎∕𝛥𝑁 calculated as
simple differences from successive DIC data using LIM (dashed lines)
and the iterative correction method (green line). Results are shown for
the uniaxial and biaxial experiment in Figs. 9(a) and 9(b), respectively.
We observe that the correction method yields a much smoother curve
indicating a lower dependency to errors in the DIC data. While LIM
as a threshold method (here, we used a threshold of 𝜀eqv > 0.5%)
is vulnerable to scatter and artefacts in the DIC data, the iterative
correction uses the fracture mechanical knowledge, i.e. 𝐴−1, 𝐵−1 → 0,
yielding more stable results. This difference between both curves is
especially relevant for the number of data points where 𝛥𝑎∕𝛥𝑁 < 0
indicating a negative crack growth rate. This is physically impossible.
With our iterative correction method, such problematic data points are
fully avoided for the uniaxial and reduced to a single data point for the
biaxial experiment, respectively.

5. Conclusion

We discover an iterative crack tip correction algorithm using deep
symbolic regression based on Williams coefficients obtained by crack
tip field characterization.

First, we create a diverse data set using simulations of single cracks
under mode I, mode II, and mixed-mode loadings. Then, we compute
Williams series coefficients at randomly sampled points around the
real crack tip position using an over-deterministic fitting approach.
Secondly, we train a deep symbolic regression model with the Williams
coefficients 𝐴−3,… , 𝐴7, 𝐵−3,… , 𝐵7 as input data and the correspond-
ing correction vectors as target output data exploiting physical unit
constraints for search space reduction. The symbolic regression yields

analytical formulas identifying the relevant input variables, i.e. of the
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Fig. 14. Iterative correction using the complex mixed-mode formulas (#11, #8) for FE data of mixed-mode load case vs. DIC data of uniaxial test. Top: von Mises eqv. strain
with crack tip correction iterations. Bottom: (Non-)convergence of 𝑑𝑥 , 𝑑𝑦 and 𝐴−1 , 𝐵−1 to zero. Left: FE. Right: DIC.
22 input Williams coefficients only 𝐴−1, 𝐴1, 𝐵−1 and 𝐵1 are used in the
most promising formulas.

We discover distinct correction formulas for mode I, mode II, and
mixed-mode load scenarios. The discovered mode I formula, is a natural
extension of [19] in the sense that the correction along the crack path
direction coincides with the known formula derived by Rethoré. The
correction perpendicular to the crack path (in 𝑦-direction) is new.

While the discovered mode II formula works only under pure mode
II loadings, the mode I formula also works under moderate mixed-
mode loadings, suggesting a wide applicability for mode-I-dominated
experiments.

Finally, we successfully applied this correction formula to experi-
mental digital image correlation data from two different fatigue crack
growth experiments — uniaxial and biaxial. After a rough estimation of
the crack tip using a line interception method, the correction algorithm
requires about 5–10 iterations to converge below a correction step size
of 10−3 mm. Simultaneously, the super-singular Williams coefficients
𝐴−1 and 𝐵−1 tend to zero. The correction algorithm improves the
stability of the crack tip detection throughout both experiments and
works for global full-field DIC as well as local high-resolution DIC.
11
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Appendix

All discovered formulas

For clarity and brevity, we skipped repetitions and only high-
lighted the most relevant Pareto formulas in Tables 2–4. For sake of
completeness, we report all formulas discovered by the 𝛷-SO tool in
Tables 5–7.

Additional vector plots

In Section 3.1, we only discussed the correction vector fields for
selected mode I, II, and mixed-mode formulas. For example, we used

Table 5
Pareto formulas — Mode I correction.

Parallel correction - 𝑑𝑥
# Complexity Reward RMSE Equation

0 4 0.66272 0.89169 − 𝐴−1

𝐴1

1 5 0.82885 0.36178 − 1.90537𝐴−1

𝐴1

2 7 0.86337 0.27726 −0.23575 mm − 1.94928𝐴−1

𝐴1

3 8 0.86337 0.27726 −0.23575 mm − 1.94928𝐴−1

𝐴1

4 9 0.86337 0.27726 −0.23575 mm − 1.94928𝐴−1

𝐴1

5 12 0.86364 0.27665 −0.22136 mm − 1.95236
𝐴1
𝐴−1

+ 𝐴3
𝐴1

6 14 0.86367 0.27656 −0.20757 mm − 𝐴1
0.51161𝐴21

𝐴−1
+𝐴3

7 15 0.87618 0.24759 −0.15055 mm − 7.64174
2.0𝐴1
𝐴−1

− 𝐴−1
𝐴−3

8 16 0.88692 0.22339 −0.18292 mm − 11.66037
4.0𝐴1
𝐴−1

− 𝐴−1
𝐴−3

9 17 0.88692 0.22339 −0.18293 mm − 11.66051
4.0𝐴1
𝐴−1

− 𝐴−1
𝐴−3

10 18 0.88692 0.22339 −0.18292 mm − 11.66052
4.0𝐴1
𝐴−1

− 𝐴−1
𝐴−3

11 19 0.88703 0.22314 −0.18589 mm − 2.84792
𝐴1
𝐴−1

− 0.23186𝐴−1
𝐴−3

12 20 0.91267 0.16766 −0.00193 mm − 0.00276𝐴−2 mm
N

− 2.08617𝐴−1

𝐴1

Perpendicular correction - 𝑑𝑦
# Complexity Reward RMSE Equation

0 4 0.61570 1.09381 − 𝐵−1

𝐴1

1 5 0.82705 0.36646 − 2.50796𝐵−1

𝐴1

2 7 0.82775 0.36465 0.03639 mm − 2.5104𝐵−1

𝐴1

3 8 0.82775 0.36465 0.03639𝐴1 mm−𝐵−1 ⋅(2.5104−𝑖𝜋)
𝐴1

4 11 0.82882 0.36193 − 73.82141𝐵−1 mm
29.36224

|
𝐴1| mm+𝐵−1

5 12 0.83067 0.35723 −2.99333 mm + |

|

|

2.99333 mm − 2.56666𝐵−1

𝐴1

|

|

|

6 13 0.96146 0.07025 9.78182𝐵1 mm−1.66341𝐵−1

𝐴1
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Table 6
Pareto formulas — Mode II correction.

Parallel correction - 𝑑𝑥
# Complexity Reward RMSE Equation

0 4 0.57814 1.27848 − 𝐵−1

𝐵1

1 5 0.60438 1.14692 1.92379 mm − 𝐵0

𝐵2

2 6 0.65980 0.90339 2.30843 mm − |

|

|

𝐵0

𝐵2

|

|

|

3 7 0.71068 0.71328 1.2532 mm − 0.6405𝐵0

𝐵2

4 8 0.78389 0.48304 17.06448 mm − 0.12296𝐵2
1

𝐵2
2

5 9 0.78389 0.48304 17.06447 mm − 0.12296𝐵2
1

𝐵2
2

6 12 0.81061 0.40936 13.27914 mm − 0.09304(𝐵0𝐵2+𝐵2
1 )

2

𝐵2
1𝐵

2
2

7 14 0.81061 0.40936 13.27914 mm − 0.09304(𝐵0𝐵2+𝐵2
1 )

2

𝐵2
1𝐵

2
2

8 15 0.81112 0.40799 13.83444 mm −
0.09642

(

𝐵1−𝐵2
|

|

|

|

𝐵0
𝐵1

|

|

|

|

)2

𝐵2
2

9 17 0.81229 0.40488 12.18511 mm − 0.08299𝐵2
1

𝐵2
2

− 0.28808
|

|

|

|

𝐵2
𝐵0

|

|

|

|

10 18 0.84853 0.31276 − 2.43992𝐵−1

𝐵1
+ 0.27118𝐵−2

𝐵2 mm

Perpendicular correction - 𝑑𝑦
# Complexity Reward RMSE Equation

0 4 0.59518 1.19191 − 𝐴−1

𝐵1

1 5 0.73554 0.63006 − 2.62186𝐴−1

𝐵1

2 6 0.86479 0.27400 − 2.29023𝐴−3

𝐵1 mm

3 7 0.86479 0.27400 − 2.29022𝐴−3

𝐵1 mm

4 8 0.86479 0.27400 − 2.29025𝐴−3

𝐵1 mm

5 9 0.87771 0.24416 1.0𝐴−1 mm−3.08621𝐴−3

𝐵1 mm

6 11 0.87885 0.24158 0.78473𝐴−1 mm−2.91486𝐴−3

𝐵1 mm

7 12 0.88124 0.23615 −0.06204 mm + 𝐴−1

𝐵1
− 3.08688𝐴−3

𝐵1 mm

8 16 0.88124 0.23615 −0.06204 mm + 𝐴−1

𝐵1
− 3.08688𝐴−3

𝐵1 mm

9 19 0.88148 0.23561 − 2.19136𝐴7𝐴−3 mm2

𝐵2
1

Formula (5) with constants equal to 1 for the mode I correction. With
the optimized constants 𝑐I𝑥 = 2, 𝑐I𝑦 = 3∕2, iterative correction is theoret-
ically faster see vector fields in Fig. 10 but less stable for experimental
DIC data. When choosing more complex formulas such as #12 for 𝑑𝑥
nd #6 for 𝑑𝑦 in Table 5, correction only works for pure mode I and
ot for mixed-mode anymore (see Fig. 11). As mentioned in the present
ork, Formula (5) works for all mode-I-dominated mixed-mode load

ases but not for pure mode II (see Fig. 12).

terative correction for experimental full-field DIC data

In Section 4.2, we showed convergence for two examples of high-
esolution DIC data from uniaxial and biaxial fatigue crack growth
xperiments obtained from a robot carrying a DIC microscope. With
ess effort (but also less precision), our iterative crack tip correction
ethod can also be applied to full-field data from the global 3D DIC

ystem. Here, we show 4 snapshots at different stages of crack growth
or the uniaxial experiment (see Fig. 13).

ore complex formulas

To demonstrate that the more complex formulas with a small RMSE
ften do not work equally well for experimental DIC data, we focus
n the mixed-mode formula #11 and #8 for 𝑑𝑥 and 𝑑𝑦, respectively.
ig. 14 shows that the correction works for FE data, but fails for DIC.
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Table 7
Pareto formulas — Mixed-mode correction.

Parallel correction - 𝑑𝑥
# Complexity Reward RMSE Equation

0 4 0.51651 1.64001 1.0⋅10−5𝐵2
−3

N2

1 5 0.54302 1.47437 0.05626𝐴4

𝐴6

2 6 0.56735 1.33602 − 𝐴−1

𝐴1+𝐵1

3 8 0.61493 1.09711 1.0⋅10−5𝐴−1 mm
|
𝐴−1|

4 9 0.61716 1.08681 − 0.00735𝐴−1

𝐴1

5 12 0.61971 1.07510 −0.18524 mm + 0.00749𝐴−1

𝐴1

6 13 0.61971 1.07510 −0.18524 mm + 0.00749𝐴−1

𝐴1

7 14 0.62085 1.06992 −0.16233 mm − 0.00033𝐴−1

𝐴1

8 15 0.62179 1.06566 −0.18905 mm + 0.00755𝐴−1

𝐴1

9 16 0.62215 1.06402 3.14533 mm − |

|

|

3.14533 mm + 0.00814𝐴−1

𝐴1

|

|

|

10 17 0.62297 1.06032 0.0153𝐴−1

𝐴1

11 18 0.64105 0.98101 0.0429𝐴1𝐴−1

𝐴3 ⋅(2.88427𝐴1 mm−𝐴−1)

Perpendicular correction - 𝑑𝑦
# Complexity Reward RMSE Equation

0 4 0.50001 1.75226 −0.0421 mm
1 5 0.50660 1.70664 0
2 6 0.56391 1.35510 − 𝐵−1

𝐴1+𝐵1

3 8 0.59950 1.17065 − 1.0⋅10−5𝐵−1 mm
|
𝐵−1|

4 12 0.59954 1.17044 − 0.0001𝐵−1

𝐴1

5 13 0.60676 1.13566 8.0⋅10−5𝐵−1

𝐴1

6 14 0.60688 1.13507 9.0⋅10−5𝐵−1

|
𝐴1|

7 16 0.60701 1.13449 − 9.0⋅10−5𝐵−1

𝐴1

8 18 0.62042 1.07207 0.02276𝐵−1

𝐴3 mm

9 19 0.62106 1.06919 −1.0 ⋅ 10−5 mm − 0.02166𝐵−1

|
𝐴3| mm
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