elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Safety-by-Design for Deep Learning Methods at the Example of Autonomous Driving

Kees, Yannick und Köster, Frank und Hallerbach, Sven (2024) Safety-by-Design for Deep Learning Methods at the Example of Autonomous Driving. Helmholtz AI Conference 2024, 2024-06-12 - 2024-06-14, Deutschland, Düsseldorf. (nicht veröffentlicht)

[img] PDF
1MB

Kurzfassung

The development of autonomous vehicles and autonomous driving functions has increased rapidly in recent years. One driving factor for this is the recent breakthroughs in machine learning and deep learning. One problem with these methods is that they are black-box systems. If we have a system that we cannot understand precisely, this raises the question of how we can use it in safety-critical applications, such as the traffic sector. In general, safety concerns are present in every engineer while developing software. However, often, they focus too much on fulfilling the requirements of their stakeholders, so safety-relevant aspects take a back seat. In contrast, we want to consider them early in the design and concept phase. This approach is known as safety-by-design (ISO 26262). However, ensuring safety does not mean the absence of risk factors. It means that risks are considered and assessed, and a strategy exists for how best to deal with them (ISO 21448). Recently, much effort has been put into applying these results to AI components (ISO 8800). The field that deals with applying engineering safety arguments to AI models is known as AI engineering. Based on these findings, we want to model a trade-off between safety aspects and functionality and apply this to deep learning.

elib-URL des Eintrags:https://elib.dlr.de/204789/
Dokumentart:Konferenzbeitrag (Poster)
Titel:Safety-by-Design for Deep Learning Methods at the Example of Autonomous Driving
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kees, Yannickyannick.kees (at) dlr.dehttps://orcid.org/0009-0004-3614-7220NICHT SPEZIFIZIERT
Köster, FrankFrank.Koester (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Hallerbach, SvenSven.Hallerbach (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:12 Juni 2024
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:nicht veröffentlicht
Stichwörter:AI-Engineering
Veranstaltungstitel:Helmholtz AI Conference 2024
Veranstaltungsort:Deutschland, Düsseldorf
Veranstaltungsart:nationale Konferenz
Veranstaltungsbeginn:12 Juni 2024
Veranstaltungsende:14 Juni 2024
Veranstalter :Helmholtz AI
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V - keine Zuordnung
DLR - Teilgebiet (Projekt, Vorhaben):V - keine Zuordnung
Standort: andere
Institute & Einrichtungen:Institut für KI-Sicherheit
Hinterlegt von: Kees, Yannick
Hinterlegt am:25 Jun 2024 14:55
Letzte Änderung:25 Jun 2024 14:55

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.