Kees, Yannick und Köster, Frank und Hallerbach, Sven (2024) Safety-by-Design for Deep Learning Methods at the Example of Autonomous Driving. Helmholtz AI Conference 2024, 2024-06-12 - 2024-06-14, Deutschland, Düsseldorf. (nicht veröffentlicht)
PDF
1MB |
Kurzfassung
The development of autonomous vehicles and autonomous driving functions has increased rapidly in recent years. One driving factor for this is the recent breakthroughs in machine learning and deep learning. One problem with these methods is that they are black-box systems. If we have a system that we cannot understand precisely, this raises the question of how we can use it in safety-critical applications, such as the traffic sector. In general, safety concerns are present in every engineer while developing software. However, often, they focus too much on fulfilling the requirements of their stakeholders, so safety-relevant aspects take a back seat. In contrast, we want to consider them early in the design and concept phase. This approach is known as safety-by-design (ISO 26262). However, ensuring safety does not mean the absence of risk factors. It means that risks are considered and assessed, and a strategy exists for how best to deal with them (ISO 21448). Recently, much effort has been put into applying these results to AI components (ISO 8800). The field that deals with applying engineering safety arguments to AI models is known as AI engineering. Based on these findings, we want to model a trade-off between safety aspects and functionality and apply this to deep learning.
elib-URL des Eintrags: | https://elib.dlr.de/204789/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||
Titel: | Safety-by-Design for Deep Learning Methods at the Example of Autonomous Driving | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 12 Juni 2024 | ||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||
Open Access: | Ja | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | nicht veröffentlicht | ||||||||||||||||
Stichwörter: | AI-Engineering | ||||||||||||||||
Veranstaltungstitel: | Helmholtz AI Conference 2024 | ||||||||||||||||
Veranstaltungsort: | Deutschland, Düsseldorf | ||||||||||||||||
Veranstaltungsart: | nationale Konferenz | ||||||||||||||||
Veranstaltungsbeginn: | 12 Juni 2024 | ||||||||||||||||
Veranstaltungsende: | 14 Juni 2024 | ||||||||||||||||
Veranstalter : | Helmholtz AI | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Verkehr | ||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||
DLR - Schwerpunkt: | Verkehr | ||||||||||||||||
DLR - Forschungsgebiet: | V - keine Zuordnung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | V - keine Zuordnung | ||||||||||||||||
Standort: | andere | ||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||
Hinterlegt von: | Kees, Yannick | ||||||||||||||||
Hinterlegt am: | 25 Jun 2024 14:55 | ||||||||||||||||
Letzte Änderung: | 25 Jun 2024 14:55 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags