Albrecht, Conrad M (2024) Weakly-Supervised Learning for Earth Observation. Oxford Physics Seminar, 2024-06-18, Oxford, Great Britain.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
While satellites stream petabytes of remote sensing data from multiple sensors each year [1], human annotation of such modalities are unable to keep that pace. My presentation highlights the success of recent deep learning methodologies such as self-supervised learning to mitigate the data labeling challenge for Earth observation [2]. Benchmark datasets derived from the Sentinel-1/2 radar/multi-spectral missions enable the training of geospatial foundation models [3,4]. For hyperspectral sensors such as DLR's EnMAP satellite, semi-supervised approaches have been proven successful, too [5]. Aside from the current hype surrounding foundation models, we explore robust training of artificial neural networks exploiting noisy labels. We introduce the concept of weak labels auto-generated from sparse, but high-quality remote sensing data such as airborne LiDAR [7]. We demonstrate use cases for urban climate resilience by quantifying local climate zones in metropolitan areas such as New York City [8,9] [1] https://doi.org/10.1016/j.scitotenv.2023.168584 [2] SSL review: https://doi.org/10.1109/MGRS.2022.3198244 [3] SSL4EO-S12: https://doi.org/10.1109/MGRS.2023.3281651 [4] SoftCon: https://doi.org/10.48550/arXiv.2405.20462 [5] HyperPAWS: https://doi.org/10.1109/IGARSS52108.2023.10282971 [6] AIO2: https://doi.org/10.1109/TGRS.2024.3373908 [7] AutoGeoLabel: https://doi.org/10.1109/BigData52589.2021.9672060 [8] AutoLCZ: https://doi.org/10.48550/arXiv.2405.13993 [9] DeepLCZChange: https://doi.org/10.1109/IGARSS52108.2023.10281573
elib-URL des Eintrags: | https://elib.dlr.de/204774/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | Weakly-Supervised Learning for Earth Observation | ||||||||
Autoren: |
| ||||||||
Datum: | 2024 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | weakly-supervised learning, foundation models, self-supervised learning, Earth observation, Sentinel-1, Sentinel-2, EnMAP, optical, hyperspectral, SAR, LiDAR, Local Climate Zones, Urban Heat Islands | ||||||||
Veranstaltungstitel: | Oxford Physics Seminar | ||||||||
Veranstaltungsort: | Oxford, Great Britain | ||||||||
Veranstaltungsart: | Andere | ||||||||
Veranstaltungsdatum: | 18 Juni 2024 | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung, R - SAR-Methoden | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||
Hinterlegt am: | 21 Jun 2024 08:15 | ||||||||
Letzte Änderung: | 21 Jun 2024 08:15 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags