Bishop, Kathleen und Liu, Chenying und Albrecht, Conrad M (2024) Towards Energy-Efficient Satellite-Onboard Landcover Classification with Spiking Neural Networks. 2024 HelmholtzAI conference, 2024-06-12, Duesseldorf.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://eventclass.it/haic2024/scientific/external-program/session?s=S-03b#e49
Kurzfassung
While artificial neural networks significantly boosted remote sensing analytics with unsupervised, semi-supervised, and supervised deep learning techniques in the past decade, utilization of such data science models implies notable demand in energy resrouces. While graphical processing units such as NVIDIA's A100 run at power consumptions of up to ~300W, our brain operates at about 20W to master tasks such as image analysis. Spiking Neural Networks (SNN) model brain neurons with their ability to accumulate signals to transmit a unit signal to the next neuron when a given threshold is passed. This sparse, energy-efficient propagation and processing of SNN has potential to get implemented in dedicated chips for AI-applications at the edge.
elib-URL des Eintrags: | https://elib.dlr.de/204338/ | ||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||
Zusätzliche Informationen: | in collaboration with Princeton University, USA | ||||||||||||||||
Titel: | Towards Energy-Efficient Satellite-Onboard Landcover Classification with Spiking Neural Networks | ||||||||||||||||
Autoren: |
| ||||||||||||||||
Datum: | 2024 | ||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||
Open Access: | Nein | ||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||
Status: | akzeptierter Beitrag | ||||||||||||||||
Stichwörter: | Spiking Neural Networks, Energy-Efficient AI, On-Board Satellite Data Processing | ||||||||||||||||
Veranstaltungstitel: | 2024 HelmholtzAI conference | ||||||||||||||||
Veranstaltungsort: | Duesseldorf | ||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||
Veranstaltungsdatum: | 12 Juni 2024 | ||||||||||||||||
Veranstalter : | Helmholtz Association | ||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz, R - Optische Fernerkundung, R - Green Satellite and Rocket Engine Systems | ||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||
Hinterlegt von: | Albrecht, Conrad M | ||||||||||||||||
Hinterlegt am: | 27 Mai 2024 09:16 | ||||||||||||||||
Letzte Änderung: | 27 Mai 2024 09:16 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags