elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

End-to-end learning of representative PV capacity factors from aggregated PV feed-ins

Zech, Matthias und von Bremen, Lüder (2024) End-to-end learning of representative PV capacity factors from aggregated PV feed-ins. Applied Energy, 361. Elsevier. doi: 10.1016/j.apenergy.2024.122923. ISSN 0306-2619.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Kurzfassung

Energy system models rely on accurate weather information to capture the spatio-temporal characteristics of renewable energy generation. Whereas energy system models are often solved with high abstraction of the actual energy system, meteorological data from reanalysis or satellites provides rich gridded information of the weather. The mapping from meteorological data to renewable energy generation usually relies on major assumptions as for solar photovoltaic energy the photovoltaic module parameters. In this study, we show that these assumptions can lead to large deviations between the reported and estimated energy, as shown for the case of photovoltaic energy in Germany. We propose a novel gradient-based end-to-end framework that can learn local representative photovoltaic capacity factors from aggregated PV feed-ins. As part of the end-to-end framework, we compare physical and neural network model formulations to obtain a functional mapping from meteorological data to photovoltaic capacity factors. We show that all the methods developed have better performance than commonly used reference methods. Both physical and neural network models have much better performance than reference models whereas operational use cases may prefer the neural network due to higher accuracy while interpretable, physical models are more suited to academic settings.

elib-URL des Eintrags:https://elib.dlr.de/204173/
Dokumentart:Zeitschriftenbeitrag
Titel:End-to-end learning of representative PV capacity factors from aggregated PV feed-ins
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Zech, MatthiasMatthias.Zech (at) dlr.dehttps://orcid.org/0000-0003-4420-5238NICHT SPEZIFIZIERT
von Bremen, Lüderlueder.von.bremen (at) dlr.dehttps://orcid.org/0000-0002-7072-0738159545066
Datum:1 Mai 2024
Erschienen in:Applied Energy
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:361
DOI:10.1016/j.apenergy.2024.122923
Verlag:Elsevier
ISSN:0306-2619
Status:veröffentlicht
Stichwörter:Energy meteorology, Solar energy, Automatic differentiation, Physics based deep learning
HGF - Forschungsbereich:Energie
HGF - Programm:Energiesystemdesign
HGF - Programmthema:Energiesystemtransformation
DLR - Schwerpunkt:Energie
DLR - Forschungsgebiet:E SY - Energiesystemtechnologie und -analyse
DLR - Teilgebiet (Projekt, Vorhaben):E - Systemanalyse und Technologiebewertung
Standort: Oldenburg
Institute & Einrichtungen:Institut für Vernetzte Energiesysteme > Energiesystemanalyse, OL
Hinterlegt von: Zech, Matthias
Hinterlegt am:14 Mai 2024 09:35
Letzte Änderung:10 Sep 2024 14:08

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.