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renewable energy generation. Whereas energy system models are often solved with high abstraction of the
actual energy system, meteorological data from reanalysis or satellites provides rich gridded information of
the weather. The mapping from meteorological data to renewable energy generation usually relies on major
assumptions as for solar photovoltaic energy the photovoltaic module parameters. In this study, we show
that these assumptions can lead to large deviations between the reported and estimated energy, as shown
for the case of photovoltaic energy in Germany. We propose a novel gradient-based end-to-end framework
that can learn local representative photovoltaic capacity factors from aggregated PV feed-ins. As part of the
end-to-end framework, we compare physical and neural network model formulations to obtain a functional
mapping from meteorological data to photovoltaic capacity factors. We show that all the methods developed
have better performance than commonly used reference methods. Both physical and neural network models
have much better performance than reference models whereas operational use cases may prefer the neural
network due to higher accuracy while interpretable, physical models are more suited to academic settings.
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1. Introduction

The consumption of fossil fuels is responsible for the majority of
anthropogenic greenhouse gas emissions [1] with the electricity sector
accounting for more than a third of the energy-related carbon diox-
ide [2]. A major pillar in reducing global greenhouse gas emissions
is the transition from a fossil-based energy system to a renewable
energy system. A wide range of studies show that energy systems based
on 100% renewable energy until 2050 are achievable with current
technology [3]. Solar photovoltaic (PV) energy has a crucial role within
this energy transition that is often still underestimated due to ignorance
of public incentive schemes, non-monetary preferences, and rapid tech-
nology learning [4]. The expansion of PV technology has experienced
remarkable global growth, with annual PV installations increasing from
around 30 GW in 2012 to around 240 GW in 2022. This has resulted
in a total installed capacity of approximately 1.2 TW worldwide [2].
This trend is expected to continue according to the IEA Sustainable
Development Scenario, which projects the PV capacity to increase to
4240 GW in 2040 [5].

The large share of PV capacities calls for accurate modeling of PV
energy generation. Physically, the solar resource-to-energy process can
be described for single PV modules with known technical properties as
described in fundamental solar energy textbooks [6] and implemented
with publicly available software [7,8]. Larger PV simulations as in
energy system models rely on detailed information of the PV modules,
as tilt and azimuth angles, which are, however, not available in publicly
accessible worldwide datasets [9,10]. Whereas there is a large body
of literature dealing with the optimal determination of tilt angles for
site installations [11], determining existing solar module parameters is
much less investigated. Recent progress has been achieved to derive
locations of PV systems based on Deep Learning in aerial images and
satellite imagery, such as, for instance, for the United States [12],
regions of Germany [13,14], China [15] and, more recently, even
worldwide [10]. However, a publicly available dataset which includes
the precise location, capacity, azimuth and tilt angles is still missing.
This is crucial for PV generation modeling as individual PV system
orientations are not determined based on yield-optimal configurations
but are subject to individual regional conditions such as roof angles,
leading to wide distributions of tilt and azimuth angles as observable
in actual data [16].

A concept widely applied in energy system modeling to handle this
missing data problem and to further reduce computational efforts is the
usage of representative sites which aggregate multiple sites into single
ones. PV energy is then modeled on the basis of simplified physical
models with assumed module parameters or empirical power curves.
This concept is used by energy system models such as the pypsa-
eur model [17] or implementations of the eTraGo model [18]. Other
datasets sample solar module parameters from distributions as in Scholz
[19] or within the Renewables.ninja dataset [20] which is a
widely used dataset [21-25] and is the default weather dataset in
energy system models such as the Dispa-SET model [26] or the
DynElmod model [27].

Methodologically, the Renewables.ninja dataset [20] exploit
both reanalysis and satellite data to derive realistic PV energy feed-
ins with randomly sampled azimuth and tilt angles to match reported
Transmission System Operator (TSO) PV feed-ins [20]. The method
from Pfenninger and Staffell [20] has significantly improved the state-
of-the-art of large-scale photovoltaic simulation, but comes with some
drawbacks: The assumption that azimuth and tilt angles follow a nor-
mal distribution is not observable in studies of actual PV systems [16]
which mostly show right-skewed distributions for tilt angles and very
sharp peak (leptokurtic) distributions for azimuth angles. Furthermore,
it is not very intuitive to assume that tilt angles are symmetric around
a mean, as local installations clearly follow local patterns as latitudinal
position and the tilt of existing roofs which are more likely to be similar
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in close areas than to be sampled from a distribution. In addition, sam-
pling from a distribution leads to different solutions for each sampling
and to non-interpretable tilt and azimuth angles. Lastly, a subsequent
bias correction is needed leading to a two-step approach in which it is
unclear what the bias actually corrects.

This study proposes an alternative approach that, instead of sam-
pling module parameters, learns module tilt and azimuth angles from
reported TSO feed-ins. As solar module parameters are needed locally
for each site and solar feed-ins come as aggregates from TSOs, we for-
mulate an integrative model which is able to learn lower level capacity
factors from spatially aggregated PV feed-ins. This translates into a hard
mathematical problem not only because of the inherent hierarchical
dependency but also as PV feed-ins depend non-linearly, due to the
underlying nonlinear physical process, on representative site azimuth
and tilt angles. For one time step, the problem is ill-posed as necessarily
more representative sites than aggregated feed-ins exist. However,
given large enough time series of solar energy feed-ins, we show that
reliable estimates can be derived with a data-driven Machine Learning
approach. We refer to this framework as an end-to-end framework,
as it directly connects the gridded meteorological information with
the aggregated PV feed-in time series. Different physical conversion
models can be integrated into this framework, for which we compare
two physical formulations, global and local site characteristics, and one
neural network formulation. In a case study, we show that the proposed
framework enables us to learn local capacity factors in Germany from
the aggregated PV feed-ins from the four TSOs. More concretely, we
investigate the following hypotheses:

Hypothesis 1. Estimated PV feed-ins through traditional method
highly deviate from aggregated reported PV feed-ins in both accuracy
and statistical relationship

Hypothesis 2. The proposed end-to-end model enables to efficiently
learn capacity factors from spatially aggregated PV feed-ins

Hypothesis 3. The neural network is most performant, but the physical
model is more interpretable and transferable

Hypothesis 1 is also the main motivation for this paper as large
deviations between observed and estimated feed-ins justify the need
for more better estimation methods. Hypothesis 2 aims to show that
the end-to-end model framework is able to learn from aggregated
feed-ins despite the problem is ill-posed. As part of the end-to-end
model, the neural networks are expected to have higher performance
than physical models as they are known to be very efficient at fitting
nonlinear relationships. As neural networks are black-box models, it is
expected that physical models have higher interpretability. This trade-
off between interpretability and accuracy, and its implications for the
usage within the energy context, is investigated in Hypothesis 3. None
of these hypotheses have been investigated in the literature so far,
highlighting the novelty in this work.

The paper contains a methodological and a practical contribu-
tion. We first introduce the methodological proposals of this paper
in Section 2 which formulates the end-to-end model framework and
the capacity factor models. The case study is then introduced (Sec-
tion 3) and is based on the hypotheses evaluated (Section 4). After
discussing the results (Section 5), this study is finally concluded and
future research directions are formulated (Section 6).

2. Model
2.1. End-to-end model framework
To learn local capacity factors from aggregated information, the

process of converting meteorological input to aggregated energy feed-
ins for all aggregated entities is embedded in an integrative model
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Fig. 1. Schematic illustration of the end-to-end model framework to map meteorological data to TSO time series. Blue circles represent mathematical operators. Note that the
automatic differentiation is illustrated for the sake of clarity around the model chain whereas in its implementation it is propagated backwards through the mathematical operators.

which we refer to as end-to-end framework. This model allows to connect
meteorological inputs X, ; for each model grid point s € S and time
step + € T to the time series of the aggregated entities s x€ S*.
In the context of this paper, s and ¢ represent the space-time grid of
the meteorological gridded data and s* represents the set of the TSOs.
A forward pass through the model chain from inputs to outputs is
described in the following to provide a better understanding its inner
mechanics, which is also visualized in Fig. 1.

The end-to-end model begins with the conversion of spatially grid-
ded meteorological information into PV capacity factors. For the sake
of clarity, this is described here as a function f which converts the
continuous meteorological input variables X, for each spatial point
s € S and for each time step t+ € T into capacity factors. Different
implementations for the capacity factor models f are described in the
next two subsections. The capacity factors are thus formulated here as

cs,r = f(Xt,s) (l)

By definition, the capacity factors have values between 0 and 1
because negative energy cannot be generated and the available energy
is upwardly limited by the installed capacity. To convert the capacity
factors into energy, the capacity factors c,, are multiplied element-wise
by the available PV capacities

G

st = L’Z‘;JXOCSJ (2)

leading to generated PV energy time series for each site. To assign
the spatial sites s to the upper-level entities s*, the PV time series are
modified through

Gy =Gy 0M Vs* 3

s,8%,1

with M .. representing a two-dimensional binary matrix (s x s*) which
maps from lower spatial levels s to aggregated spatial levels s*. The
entries in M . indicate the belonging of a site to the aggregated entity
and zeros indicate no belonging, respectively. More precisely in the
context of the case study: If one site belongs to a TSO, it is indicated
by 1 in the matrix M and O otherwise. Note that the indices do not
match in the element-wise multiplication. The notation means that the
element-wise multiplication is broadcasted by the index s* meaning
that the tensor G, is multiplied element-wise |s*| times by the binary
matrix M, ... This leads to the tensor G« , which represents for each
aggregated entity s* at each site s its respective PV feed-in time series.

To make the estimations match with the aggregated time series, the
tensors are summed up over all sites

Gs*,t = Z Gs,s*,t (4)
s

which results in the final estimated PV generation time series of the
TSOs. Through the loss function, the divergence between reported y,-
and calculated hourly PV generation G, , is calculated. The models are
trained on the L1-Loss in this study which leads to the loss

1 1%
L(yg 1, Gy ) = NS Z Z [Vge s — Gyl 5)
n o s*

The L1-loss is chosen for its robustness towards outliers and its high
interpretability, as it directly reflects the average magnitude of errors.
Based on the loss, the gradients are calculated and reported back to
the capacity factor model. The capacity factor model then adapts its
model weights by the gradients in the direction of improving the loss
and restarts the forward pass of the end-to-end framework.

The gradients are not derived analytically but based on the py-—
torch library [28] which provides efficient implementations to au-
tomatically calculate gradients through efficient exploitation of the
chain rule [29]. Despite it is more known as a method to train deep
neural networks, automatic differentiation has shown high promise in
this study to learn parameters with the hierarchical structure of the
end-to-end framework.

2.2. Capacity factor model

To derive solar capacity factors, this section describes two different
approaches to define the function f in Eq. (1) which maps the meteoro-
logical information to capacity factors. Both proposals are implemented
with standard mathematical operators and linear algebra which makes
them trainable through gradient-based approaches. Therefore, they can
both be implemented in a modular fashion in the end-to-end framework
from Section 2.1.

2.2.1. Physical model

The physical model aims to physically describe the PV energy
conversion process and to optimize the most relevant parameters of
the physical model. For this purpose, a simplified PV conversion model
is developed,inspired by the physical formulation of the atlite li-
brary [30] and implemented in pytorch [28] to enable automatic
differentiation.

To calculate the total irradiance on a tilted plane, we use a simple
trigonometric model based on Sproul [31]. The total irradiance I Tmb on

a tilted plane consists of the direct Igir and diffuse irradiance I}, ;

T _ 4T T
Iglob - IDir + IDif (6)

The direct irradiance on a tilted surface Igir can be derived in
accordance with Sproul [31] following

T _ gN
Ip,,. = Ip; cosf 7
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where 1 g’ir represents the direct irradiance on a plane normal to the
direct beam irradiance and 6 the sun incidence angle of the direct
irradiance. Following the simple vector analysis in Sproul [31], the last
term can be calculated from

cosf = sin BPY cos a® cos(yP’ — y*) + cos fsina’ (8)

with gPY PV tilt angle, o* sun altitude, y”* azimuth angle of the PV
system and y* azimuth angle of the sun.
The diffuse irradiance on the tilted plane is retrieved from Reindl
et al. [32] through
1 + cos pP¥ 1 — cos pP¥

T N N
I, = 3 Ipir + 021G, 5 9
with 767 total influx on a horizontal plane, p the ground albedo which
is derived in accordance with Hofmann et al. [30] through

IN _ N
— Glob Net (10)

N
IGlab

whereas 1 ge , represents the solar radiation reaching a horizontal plane
minus the ground albedo. This parameter can be retrieved from reanal-
ysis models, as from the ERA5 model [33] used in this study, and allows
a more accurate description of the ground albedo than commonly used
constant values as in comparable studies [19,20].

The tilted irradiance is next translated into PV energy using the PV
module performance model from Huld et al. [34] which only depends
on the module temperature and the in-plane irradiance through

IT
lob
P}, Toa) = Psrc Isgroc Hya(I',T") an

with Pgro indicating the power at standard test conditions (STC) of
Ispe = 1000W/m? and T,,,4 sy¢ = 25°C respective temperature. The
relative efficiency 7,,, is calculated as proposed from Huld et al. [34]

o (', T') = 14y In I +hey[In I' 4T (kg +hy In I +ks[In ') +kg T (12)

where I’ and T’ are normalized parameters to STC values with I’ =
IgT[ob/IOOO and T’ = T,+0.035G —298.15 [34]. The parameters &, ..., k¢
are empirical coefficients that are fitted in practice to modules [34]
but in this study are based on the standard carbon silicon PV module
from the atlite library [30]. As a last step in the physical model, the
energy is reduced by the inverter efficiencies that are assumed to be
90% in accordance with Hofmann et al. [30].

In this study all the described parameters are fixed except for the
tilt angle p”” and the solar azimuth angle y?* printed in bold in Eq. (8).
In a data-driven way, these are learned within the end-to-end model
f(efs 18P, yP, X) using the feature matrix X. Note that g and y”" can
both be globally defined or with locally different values g2°, 7"’ which
is both tested in this study. Using global values aligns with other studies
applying one reference module whereas locally different values are the
more realistic choice.

2.2.2. Neural network formulation

As an alternative to the physical capacity factor model, a multi-
layer perceptron (MLP) neural network formulation is proposed which
ignores any physical knowledge. Neural networks are very efficient at
fitting non-linear relationships which makes them a promising tool to
learn the PV energy conversion model, which is, for example, already
shown for single PV module measurements [35]. More precisely, the
neural network learns the energy conversion process including the
PV panel efficiencies from scratch. The input features of the neural
network are selected based on the relevant parameters of the physical
model to make the results more comparable. According to Occam’s
razor, the simplest possible model should always be preferred over
more complex high-parametric models [36]. The final neural network
architecture is thus determined by starting with a simple 2-layer dense
neural network and its complexity is gradually increased until the
training and validation error did not improve anymore. This finally
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leads to a simple 3-layer deep neural network as shown in Fig. 2(b)
with layers of 7, 8 and 5 neurons. As in addition to the weights, a
bias term is added to each neuron as shown in Fig. 2(a), the total
number of learnable parameters consists of the weights (7 * 8 + 8 =
5+ 5 = 101) and the bias (|/;| + |/;]) = 13 leading in total to
114 learnable parameters. Note that this network is small compared
to neural networks applied to image recognition tasks which usually
contain more than a million parameters [37]. The layers are connected
with Rectifier Linear Unit (ReLU) activation functions which allows
the neural network to learn non-linear relationships as stated by the
universal approximation theorem [38] which is necessary as illustrated
in the description of the physical process in Section 2.2.1. The final
outputs of the neural network are forced to be between 0 and 1 using
the sigmoid function (sig(z) = H%) with z representing the output of
the last hidden layer of the neural network. Using the sigmoid function
is a trick to restrict the codomain of the capacity factor model function
to the feasible set of capacity factors in accordance with the end-to-end
framework formulation making physical and neural network outputs
directly comparable. Furthermore, the sigmoid function and its opti-
mization behavior are well studied in neural network implementations
due to its standard usage as final outputs for binary classifications.
Before feeding the data into the neural network, each parameter is
standardized through x,; = X370 jn which the mean %, and the

H(Xr.x)
standard deviation o(x, ) are retrieved from training data to prevent

data leakage. Standardization improves the numerical stability of the
optimizer.

In contrast to the physical model, the neural network does not
have any location-specific information, but aims at finding a general
mapping of the meteorological inputs to capacity factors. It is therefore
comparable to a physical model with global azimuth and tilt angles.

3. Case study
3.1. Models

To illustrate the performance of the proposed models, the end-to-
end model is tested for three different formulations of capacity factor
models. The physical global model (PhyGlob) assumes that all repre-
sentative sites have the same trainable azimuth and tilt angle within
Germany. The physical local model (PhyLoc) allows different trainable
tilt and azimuth angles for each site which is a more realistic setting
given the large heterogeneity of PV module orientations. The neural
network model (MLP) only assumes one global model without local
information. Therefore, the MLP and PhyGlob models do not contain
local site information, while the PhyLoc model allows for different
azimuth and tilt angles.

To verify the models three reference models are formulated based
on the same physical model from Section 2.2.1, but with assumed fixed
azimuth and tilt angles as implemented in the atlite library [30].
Two reference models are investigated following the implementations
which we refer to as conservative model (RefCon) and the optimal layout
model (RefOpt). The RefCon model assumes fixed tilt angles of 30° for
all representative sites. The RefOpt model refers to a layout of tilt and
azimuth angles that maximize the energy yield. In case of Germany
with latitudes ranging from roughly 44° to 55°, all latitudes between
44° to 50° obtain a tilt angle equal to the latitude and for all values
above 50° a tilt angle of 40° is assumed in accordance with the atlite
library [30]. A third reference model uses the RefCon model and applies
a multiplicative bias correction scheme based on TSO feed-ins which we
name RefCon+. Applying bias correction is a widely used technique
to avoid systematic over- or underestimation for the meteorological
data [39] and also for the converted PV energy feed-ins [20].

The RefCon model is inspired by similar assumptions of tilt (30°)
and azimuth angles (0°) in other studies using PV simulation for
Germany and Europe. The pypsa-eur model uses a fixed tilt angle
of 35° for entire Europe [17]. Furthermore, the examples within the
atlite andthe feedinlib library also propose to use 30° tilt angles.
The Renewables.ninja dataset uses a normal distribution of both
tilt (NV'(35°,15°)) and azimuth angles (N(180°,40°)) [20].
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Fig. 2. Structure of used neural network model in this study.

3.2. Data

The main data source for the meteorological data originates from
the global atmospheric reanalysis model ERA5 from the European
Centre for Medium-Range Weather Forecasts with a spatial resolution
of 0.25° x 0.25° representing 31 km [33]. The retrieved parameters are
the global horizontal irradiation (I é"la b), the surface net solar irradiation
u 1{/\’8’) necessary to retrieve the ground albedo (p = IY . — IV ), the

Glob Net
direct solar irradiation (I {;’ir) to derive the diffuse irradiation (/

N _

Di
1 glob -1 1’;’,,,) and the temperature at 2 meters (7). This leads to four {ne-
teorological parameters retrieved from the ERA5 data (1 g’, - I g’ir, p,T,).
To obtain the other necessary input data, the other parameters specific
to the sun (solar elevation angle, solar azimuth angle and top of
the atmosphere insulation) are calculated based on the solar model
from Reindl et al. [32] through the atlite library.

Besides reanalysis data, satellite-derived irradiance is often used
within energy system modeling. They are known to provide accurate
solar irradiance estimates due to the high spatio-temporal resolution
and the ability to directly measure the solar radiation reaching the
Earth’s surface [40]. Therefore, as a second meteorological data source,
the SARAH-2 [41] data from the Meteosat-based CM-SAF satellites is
used to compare the generalizability of the models to different datasets.
To ensure that the spatiotemporal resolutions of both ERA5 (1 h,
0.25°) and SARAH-2 (30 min, 0.05°) are identical, the SARAH-2 data
is aggregated to hourly values and averaged to the ERAS5 spatial grid.
The variables retrieved from SARAH-2 are the direct gir and diffuse
irradiation I g’i ; whereas for all other parameters ERA5 data are used.
The meteorological data used in this study are shown for one hour in
Fig. 3. A comparison of the direct and diffuse irradiance from SARAH-2
and ERAS reveals the greater level of detail in SARAH-2.

The installed PV capacities are retrieved from the Open Power Sys-
tem Data (opsd) database [42] on postal code levels and are remapped
to the ERA5 grid resolution. The capacities are considered as yearly
energy capacities and are based on all available PV systems until the
mid of the respective year. The PV generation time series from the
four German TSOs 50Hertz, Amprion, TenneT and TransnetBW are
also retrieved from the opsd database [42]. The download and the
postprocessing of the meteorological data are based on scripts within
the atlite library [30].

3.3. Model training and verification

Even if the physical and neural network model formulations are
fundamentally different from a technical point of view, mathematically

they are both non-convex optimization problems which are computa-
tionally hard to solve. This is the reason why a data-driven approach
for both models is chosen. Whereas for the neural network this is
a common approach, we show that also the physical models can be
trained to reasonable values using automatic differentiation. To prevent
from overfitting, the models are trained using a 5-fold cross-validation
approach. This means that each year between 2012 and 2017 is left
out for validation once and the model is trained on the other years.
This is repeated until all years are once in the validation set (5 times)
which represents one training epoch. The models are trained on both
ERAS5 and SARAH-2 datasets and the validation score is averaged over
both datasets. This not only makes the models more robust but allows
one to use the same models for both datasets. The training procedure is
stopped when the optimizer is unable to improve the validation accu-
racy during the last 3 epochs, which is more commonly known as Early
stopping [36]. The L1-Loss is chosen to be optimized for each single
TSO as a multi-task loss with the Adam [43] optimization algorithm
and a batch size of one entire year (8760 h). Different learning rates
{7.5¢74,1e73,...,2.5¢7!} are used to test the sensitivity to the learning
rate. The linear layers of the neural network are initialized based on
the standard uniform distribution (2 with a = L" and » neurons).
The physical models are initialized based on the conservative reference
model of 30° tilt angle and 180° azimuth angle perturbed by Gaussian
noise with tilt angles to sample from AN '(30°,5°) and azimuth angles
sampled from N'(180°, 1°). The final verification metrics are evaluated
on the left-out year (2018) not used within training and verification.

All models, except the reference models, were trained on GPU
architectures (Tesla V100, 16 GB) which took a few hours. Training the
model and performing inference are, however, also possible on CPU-
only architectures as the utilized pytorch [28] library supports both
GPU and CPU. It is important to note that this leads to longer training
times, as the GPU proved to be approximately twice as fast compared
to training on a CPU-only architecture (20 cores).

4. Results
4.1. Training

Fig. 4 depicts the validation error (MAE) during the training pro-
cedure of the two physical models (PhyLoc, PhyGlob) and the neural

network model (MLP). The validation error subject to training itera-
tions (Fig. 4(b)) shows the learning behavior that provides information



M. Zech and L. von Bremen

55°N

SARAH-2 dlrect influx [wim?]

o wOARAH-2 diff\q.s‘e influx [w/m? 255 L
675 “ b '*i 378 n

Applied Energy 361 (2024) 122923

ERADS albedo il

> 0.210

o0 T it oW |32 0.189

525°N ’ -Zf_’g 525°N r 306 52.5°N 0.168

175 . 270 0.147

300 : f234 0.126

50°N |§- 205 50°N q 198 50°N |¢ 0.105

150 ‘g. 162 0.084

75 - M 126 i 0.063

47.5“NG & 15°€ -0 47. 5°h%aE_-.' T -90 47'5"}‘5“5 e 0.042
SN ERA5 dlr‘ect influx wima, [K]

S5 ERAi djﬁgsg influx /m’]

= 600
; [ o 292.25
525°N c -450 290.50
375 288.75
[ 300 3 . 287.00
50°N 225 188 ) » q -285.25
150 160 . 1 ; 283.50
75 ‘ 132 281.75
L e T -0 SN T g oE 280.00
s o solar elevation angle solar azimuth I
ras ﬂg- "58.2 S I L “194.7
n 2 -57.3 & 192.9
T -56.4 -191.1
526N ' -55.5 -189.3
54.6 -187.5
| 53.7 | 185.7
50°N ‘ 52.8 183.9
51.9 182.1
51.0 -180.3
AT 9E 12°E 15g 201 15 1785

Fig. 3. Exemplary data used to derive capacity factors. (2018-05-03 12:00).

500

450

400

350

# 300
=
250
200 \
150 N———
1000 20 40 60 80 100
Iterations
=== PhylLoc === PhyGlob === MLP

(a) Validation loss by iteration (best learning rate)

200

<
s 163
144

19|

PhyGlob
Models

PhyLoc

0.00075 0.0025 0.0075
0.001 0005 === 001

—0.025
=005

- 0.075
- 01

- 025

(b) Validation loss by learning rate

Fig. 4. Learning performance of the different model implementations.

about the bias of the model and the risk of overfitting. The models
are relatively resistant to overfitting, except for the case of 0.25 for
the MLP, visible in no sudden increases of validation error. Regarding
the learning rate (Fig. 4(a)), a wide range of learning rates lead to
similar results. Comparing the best performance between the models,
the neural network achieves a lower validation error compared to both
physical models. Between the physical models, the local physical model
performs better than the global physical model (12%).

4.2. Performance

The performance of the different proposed methods and the ref-
erence models is shown in Table 1. The MLP is strictly better than
the other methods. This translates into bias reductions of up to 90%
(RefOpt, SARAH-2) and MAE reductions of up to 74% (RefOpt, SARAH-
2). Compared to its closest competitor (PhyLoc), the MLP still shows
better metrics with more than 50% lower bias for the SARAH-2 dataset
and 60% for the ERAS dataset. The MLP is also more performant for
both datasets in all metrics compared to the other methods. Very high
correlation coefficients are observable for all methods and datasets
whereas the neural network provides close to perfect positive corre-
lation (0.997).

Table 1
Model characteristics and performance based on left-out year (2018). Favorable
properties are printed in bold.

PhyLoc PhyGlob MLP RefCon RefOpt RefCon+

MAE ERA5 0.64 0.72 0.42 1.77 1.86 0.83
MAE SARAH-2 0.48 0.60 0.31 1.17 1.19 0.55
Correlation ERAS 0.988 0.986 0.993 0.975 0.968 0.975
Correlation SARAH-2  0.993 0.991 0.997 0.991 0.986 0.991
Bias ERAS 0.31 0.35 0.13 1.56 1.57 0.40
Bias SARAH-2 0.21 0.31 0.10 1.03 1.11 0.20

# Fitted parameters 2|s| 2 114 - - 2

Regarding the choice of the meteorological datasets, the SARAH-2
shows better performance in all metrics compared to the ERAS5 dataset.
Using SARAH-2 instead of ERA5 improves the bias and MAE by up to
34% (RefCon model).

Between the reference models, the RefCon model leads to better
metrics for all datasets than the RefOpt model showing that this is the
more competitive benchmark model. Applying a bias correction scheme
further improves the RefCon model showing competitive bias results for
the SARAH-2 dataset (0.55) which is even better than the PhyGlob (0.6)
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Fig. 5. Residuals (upper plot) and model estimates (below) of weekly mean solar energy feed-in for different meteorological data sources (ERA5, SARAH-2) in 2018.
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Fig. 6. Observation (solid line) and model estimation residuals (dashed lines) averaged over seasons in 2018.

model. In terms of MAE, the RefCon+ shows worse MAE values than
the PhyLoc (0.83 vs. 0.64) for ERA5 and SARAH-2 (0.55 vs. 0.48).

Note that the application of a multiplicative correction scheme can
be interpreted as compressing (0 < a < 1) or decompressing a point
cloud (a > 1). Therefore, applying a bias correction scheme as in
the RefCon+ model does not improve the correlation coefficient and
therefore also does not improve the statistical relationship between
feed-ins and estimates. This is shown in Table 1 as Refcon and RefCon+
model have the same correlation coefficient. A more rigorous proof
of this statement is formulated in the proof in Appendix to which the
interested readers are referred.

To understand the aggregated metrics better, we decompose them
into weekly, daily, and hourly components. Fig. 5 shows the weekly
mean of the PV feed-ins and the residuals between model estimations
and reported feed-ins. Uncorrected reference models lead to large over-
estimation during the winter season peaking in March and November
regardless of the meteorological data used. Whereas bias correction can
improve the bias on average, the yearly cycle shows that this comes

at the cost of a negative bias during summer as shown by the blue
dotted line in Fig. 5 with still large a large positive bias in winter.
The fitted physical models PhyGlob and PhyLoc are able to reduce
the winter bias compared to the reference models but to the cost of
overestimation during the summer season. The neural network only
has minor errors, without apparent seasonal bias. Large differences
between the weather datasets can be observed not only in magnitude
but also in the structural behavior of the time series. For example, in
August, all methods show a large positive bias using ERA5 data while
this is not observable using the SARAH-2 data.

The diurnal bias for the different seasons is depicted in Fig. 6.
The uncorrected reference models show large positive bias during the
winter period which is for the ERA5 dataset as large as the actual feed-
in. Applying a bias correction reduces this large winter overestimation
to the cost of larger underestimations in summer. Furthermore, all
reference models suffer from a negative bias during the early hours
of the summer days, which is worsened by bias correction. The fitted
physical models show much smaller bias during the evening hours in
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Fig. 7. Scatterplot between observed and estimated feed-ins (2018).

summer a positive bias can be observed which is more dominant in the
SARAH-2 dataset. Again, the neural networks do not show any bias.

To evaluate the actual fit of the different models, Fig. 7 compares
the hourly estimates against the reported values and its respective
correlation. The neural network accurately captures the statistical re-
lationship as shown by the thin lines for both weather datasets. The
SARAH-2 dataset has a smaller spread shown by narrower lines for all
methods. The reference models show a distinct positive bias indicated
by the large number of values below the red lines. Bias correction can
aid to improve this, yet at the cost of a larger number of underesti-
mations. The physical models also show a very distinct positive bias
leading to spikes in the case of the SARAH-2 dataset which aligns with
the summer evening hour bias observed in the diurnal cycle in Fig. 6.
The reference models show for both datasets high deviations as visible
through the fan-like pattern in the graph origin for both datasets. The
fitted models are able to largely reduce these deviations.

4.3. Interpretability

In contrast to the blackbox neural network model, the physical
models derive actual tilt and azimuth angles and therefore provide
interpretable physical entities. The spatially different azimuth and tilt
angles of the PhyLoc model including its distributions are shown in
Fig. 8. The distribution of tilt angles is located between 0° and 60°
with a mean of 10.4° showing a right skewed distribution. The azimuth
angles (Fig. 8b) have a predominant south-east orientation in the range
from 135° to 181° with a mean of around 168°. A large peak around
180°, meaning perfect south orientation, is observable. The PhyGlob
model has a single azimuth angle of 181° and a single tilt angle of
1° which represents a flat PV system oriented southward. The PhyLoc
model, therefore, leads to a more realistic setting covering a wide range
of plausible PV panel configurations.

In addition to having interpretable weights, both physical and neu-
ral network models have the advantage of providing capacity factors.
Fig. 9 shows the global horizontal irradiation (GHI) and the respec-
tive estimated model capacity factors. The difference between global
models (PhyGlob, MLP) and the model with local information (PhyLoc)
becomes evident when looking at the spatial smoothness of the capacity
factors. The PhyLoc model leads to a pixelated image, whereas the other

models learn a general applicable capacity factor model. It therefore
leads to a more reasonable solution as different azimuth and tilt angles
necessarily also lead to different capacity factors, which is not true for
the global models.

Furthermore, the physical models have an obvious but useful ad-
vantage. As the weights are standalone physical entities, they can be
used within existing physical model implementations.

5. Discussion

This section summarizes and discusses the results in alignment with
the formulated hypotheses and the existing literature.

Existing reference models fail to accurately model PV energy
feed-ins. Both conservative layout (RefCon) and yield-optimal layout
(RefOpt) lack model performance. Without any correction, both ref-
erence models highly overestimate the actual PV feed-in leading to
a bias of 100% in the winter months. Applying a multiplicative bias
correction as in Pfenninger and Staffell [20] can reduce the yearly bias,
but still shows a large positive bias during the winter months and a
strong negative bias during the summer months. In the energy context
this is undesirable, as during times of high load (winter) PV feed-in
are overestimated and during times of low load (summer) PV feed-ins
are heavily underestimated. This could lead to underestimations during
critical winter periods of backup and storage capacities. Furthermore,
underestimated PV feed-ins during summer underrate the risk of PV
curtailments. In addition, we show and prove that a multiplicative
bias correction cannot improve the correlation. Therefore, systematic
misalignments of PV modules cannot be corrected by bias correction.
Furthermore, applying a bias correction directly on the feed-ins hamper
the link to the source of the bias making it impossible to find the
reason for the bias. By consequence, a bias could correct a multitude
of different aspects of the model chain as for instance a meteorolog-
ical bias, insufficient physical model descriptions, erroneous capacity
assumptions or the PV module efficiency. As tilt and azimuth angles
are besides the installed capacity the most sensitive parameters for PV
output [44], it is likely that the bias corrects incorrectly assumed tilt
and azimuth angles while an end-to-end model, as proposed in this
study, is able to learn these directly. This is also shown in the results
of this study as a large proportion of the errors cannot be reduced with
bias correction while the proposed fitted models can.
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Fig. 9. Global horizontal irradiance and model capacity factors (ERA5, 2018-05-03 12:00) for the spatial extent of Germany.

The proposed end-to-end framework is modular and efficient.
All models within the framework show superior performance over all
metrics compared to the uncorrected reference models. In the case of
the bias corrected reference model, the PhyLoc and the neural network
still show strictly better performance. The neural network outperforms
the other models evident by smaller errors compared to the RefCon
model (MAE: 74%) and the RefCon+ model (MAE: 44%). Regarding
the learning behavior, it is observable that all models show clean
learning behavior without overfitting. The physical models start from
a much better start than the neural network which can be explained
by their physical backbone. Embedding the learning within physical
equations provide a smaller learning space which leads to good initial
learning values but also. However, if the physical model is too simple,
it can also lead to restrictive capabilities of the model. All models
seem relatively robust, as even with a different set of learning rates
solutions of similar accuracy are achievable. Between the capacity
factor models, the best performing learning rate is similar. Therefore,
we show that the proposed end-to-end framework is able to learn
effectively, making it an attractive methodology to connect the inherent
hierarchical dependencies within a learnable framework.

The modularity of the end-to-end framework provides rich
further research avenues. We show that two very different capacity
factor models based on neural networks and physical models are able to
learn within the framework. Due to its modular formulation, the end-to-
end framework is applicable to other research areas with hierarchically
organized data as the only requirement of the model chain is that the
mathematical operators need to follow tensor operations implemented
in common deep learning frameworks. For instance, the derivation of
wind capacity factors given an appropriate wind capacity factor model

for f can be easily formulated in the same way as the PV capacity factor
model. Furthermore, other parameters of the model can be adapted,
such as the energy capacities c;/* and the mapping matrix M, .. The
capacity matrix could include weights to estimate the data uncertainty
of installed power capacities. A modification of M . would allow to
incorporate other hierarchical information organizations: In this study,
one location can only belong to one TSO, however, spatial points
could only belong partly (M € R*) or to multiple aggregated time
series (), M, > 1:M € {0,1}). The latter would apply under the
consideration of multiple hierarchies, as for instance, the simultaneous
consideration of postal code feed-ins and TSO feed-ins. This setting
resembles the problem of forecast reconciliation which is an active
research area within the forecasting literature as described in Hyndman
et al. [45] that found successful applications in solar forecasting to
model temporal [46] and geographical [47] hierarchical dependencies.
Embedding these hierarchies in the end-to-end framework from this
study and using the end-to-end framework within forecasting contexts
are promising research avenues.

Neural networks are most performant, whereas physical mod-
els are slightly less performant but highly interpretable. The neural
network highly outperforms the reference models but also the best
physical (PhyLoc) model. It has a much lower MAE (35%), better cor-
relation (0.997 vs. 0.993) and lower bias (53%) than the PhyLoc model
and does not show specific seasonal or diurnal errors. This is remark-
able as the model only contains one model for all sites which shows that
one neural network without site information is able to correct wrong
assumptions of installed capacities, weather data or the physical con-
version process based on the provided features. However, the PhyLoc
model still shows large success compared to the best reference model
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RefCon+ with MAE improvements of 23% (ERA5) and 13% (Sarah-2). A
possible avenue to increase the PhyLoc’s performance may be to include
a term correcting wrongly assumed installed capacities or module net
efficiencies which are treated as constants in the fitted models. This
is particularly promising regarding the immense performance gain of
the RefCon+ over the RefCon model (MAE SARAH-2: 54%, MAE ERAS5:
55%). To assess how realistic the derived tilt and azimuth values of the
PhyLoc model are, we compare the calculated values with the actual
ones. Killinger et al. [16] conducted a study analyzing tilt and azimuth
angles from a commercial database in multiple countries including
Germany. In case of Germany, the tilt angles resemble a right-skewed
distribution ranging from 0° to 50° whereas the calculated tilt angle
distribution in this study is located in the same range with a smaller
spread. With respect to orientation, actual PV azimuth angles face all
directions from north to south [16] with a predominant number of
systems orientated towards the south. Compared to the fitted azimuth
angles in this study, the heavy south orientation is also observable, as
shown in Fig. 8, while the range of azimuth angles is smaller in this
study.

The preferred model depends on the use-case The higher inter-
pretability of the physical models also has a fundamental advantage
over the neural network as the modeler has entire control over the
model. Single model factors can be adapted as for instance a factor
describing installed capacity uncertainty as a specific bias correction
factor. A blackbox neural network model provides no link between
parameters and errors. The only possibility to improve the neural
network performance is to make them more complex and to use more
data which does not help in understanding the underlying reason. In
contrast, reducing model errors in physical models necessarily leads
to a better understanding of the entire physical process, making them
more reliable in academic settings. In particular, for studies with long-
term focus as intended by Pfenninger and Staffell [20], physical models
provide possibilities to adapt model coefficients such as increasing
module efficiencies or different installed capacities. Using a blackbox
model makes it difficult to understand whether the investigated vari-
ability is raised by climate variability or just by an overfitted neural
network model. Therefore, a strong academic interest should be to
derive interpretable and modifiable models as with the physical model
approach (PhyLoc). Large-scale studies deriving renewable sites based
on remote sensing data [14] can help to derive new site information to
be incorporated in physical model approaches. Yet, the neural network
provides more accurate results which are interesting for use cases more
interested in accuracy rather than interpretability as, for instance, in
optimal control settings.

The meteorological dataset matters. A side-product of this study
is the superiority of SARAH-2 data over ERA5 data for aggregated
PV energy feed-in simulations. All models, including reference models,
show large performance gains through the use of the SARAH-2 data
over the ERA5S dataset. This aligns with the observations on irradiance
(GHI) conducted by Urraca et al. [40] who state that despite recent
improvements of reanalysis data (ERA5, COSMO-REA6), satellite data
still have a higher accuracy than reanalysis data [40]. Urraca et al. [40]
observe a positive bias in the ERA5 GHI values which also aligns with
the observed positive bias of PV generation in this study. Using SARAH-
2 instead of ERA5 data can reduce the MAE of the GHI by around 36%
(1- :%‘5‘) [40] which is similar to the improvements of the PV feed-ins
in this study. The MAE of the reference models can also be significantly
reduced using SARAH-2 data (RefCon: 34%, RefOpt: 36%, RefCon +:
34%), while fitted models within the end-to-end framework benefit
less from different meteorological datasets (PhyLoc: 25%, PhyGlob:
17%, MLP: 26%). This shows the models robustness regarding different
weather data which certainly comes to the cost of learning one general
relationship suited to both datasets. For operational settings, training
the models only on satellite data is promising to obtain even higher
performances. The trained models in this study are forced to suit two
different datasets with one (ERAS5) having arguably lower accuracy
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probably reducing the overall algorithm performance. Training on both
datasets however was chosen to obtain one general model for both
datasets which is certainly an artificial competitive disadvantage over
the bias-corrected reference model.

Reliable large-scale feed-ins are difficult to obtain.

The formulation of the representative capacity factor model within
the end-to-end framework assumes that learning based on reported
aggregated feed-ins can improve the solar capacity factor model. There-
fore, a critical remark is how reliable the reported TSO PV feed-ins
are. This question is also raised in Pfenninger and Staffell [20] who
reports that TSO feed-ins are often not measured but calculated through
representative sites. In addition, the reported feed-ins represent actual
outputs which include non-physical effects such as market inefficien-
cies, grid restrictions, technical defects or curtailments. By contrast,
energy system models aim to exclude these effects as these are model
outputs and not inputs. Even if curtailment is less an issue for the
investigated data in Germany with only 0.3% of the potential PV output
in 2018 [48], this issue needs to be addressed when the model is
applied to other regions such as California [48].

6. Conclusion

This study shows that estimated PV feed-ins based on reference
methods deviate from TSO reported feed-ins for the case study of
Germany. Both accuracy and statistical behavior do not match with
reported feed-ins, raising the question of how to more reliably derive
local PV capacity factors from aggregated PV feed-ins. To address this
problem, we propose an end-to-end model framework that can recreate
PV energy feed-ins more realistically than existing reference models.
This study proposes different solar capacity factor models based on
blackbox neural network models and based on physical models with
learnable tilt and azimuth angles (global and local configuration).
The efficiency of this framework is shown by the fact that all model
implementations have higher performance than the compared reference
models. Regarding the model implementations, the neural network
model is more performant than the physical models, making neural
networks attractive for studies with a greater focus on accuracy than
interpretability. The physical models have high interpretability and
better performance than the reference models, making them more
appropriate for academia.

This paper opens multiple avenues for future research. As the end-
to-end model is broadly formulated, it can be used in a wide range of
research contexts. This includes the transfer to other renewable energy
sources, such as wind energy, or the consideration of further hierarchi-
cal dependencies, such as lower-level distribution grids or postal codes.
Another interesting research topic might be to study the sensitivity
of the model accuracy to the number of sites, as a minimum number
of sites is probably needed to obtain reliable estimates. Furthermore,
a future study could investigate how reliable the azimuth and tilt
angles are when the model is applied to other systems, including urban
systems, with known characteristics as a tool to solve missing data
problems.
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Appendix. Proof: invariance of scale for correlation (multiplica-
tive bias correction)

We want to show that the multiplicative bias correction does not
change the Pearson correlation coefficient. Multiplicative bias correc-
tions can be interpreted mathematically as a linear transformation aY’
with @ > 0 of the original time series Y. This translates into the
hypothesis

corr(X,Y) = corr(X,aY) (A.1)
The Pearson correlation coefficient is defined as
couv(X,Y)
X,Y)= ———= A.2
corr(X,Y) o (X)o) (A.2)

The linear transformation of the covariance can be simplified to

cov(X,aY) =n"'(X — X)(aY — aY)
=an {(X - X)(Y - Y)

= acov(X,Y) (A.3)

and the standard deviation to

o(aX) =+/Var(ax)
=Va*Var(X)
= Ve Var(x)

=ao(X) A4

Finally, we can show that
acov(X,Y)  cov(X,Y)
ac(X)o(Y) ~ o(X)a(Y)
which is, quod erat demonstrandum, the Hypothesis Eq. (A.1) and
finishes the proof.

corr(X,aY) = = corr(X,Y) (A.5)
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