Herold, Hendrik and Reuschenberg, David and Meiers, Thomas and Leichtle, Tobias and Handschuh, Jana and Petry, Lisanne (2023) Deep learning-based mapping of urban heat islands. 23rd European Colloquium on Theoretical and Quantitative Geography, 2023-09-14 - 2023-09-17, Braga, Portugal.
Full text not available from this repository.
Abstract
Urban heat islands pose a serious problem for urban populations worldwide. In the view of global warming, cities face the challenge of counteracting the increasing overheating of their densely built centres during summer heat waves. In order to be able to take efficient countermeasures, city administrations and urban planners need to know the cooling effect of individual measures. However, empirical data on the effects or possibilities of ex-ante simulations of planned actions are often lacking. To support urban planners with this task, we propose a deep learning-based approach to high resolution mapping and prediction of local UHIs. For this, we employ a dense medium-cost sensor network distributed throughout the city of Dresden, Germany. With the gained temperature sensor measurements, we train a DL model against various data from the environment of the sensors, such as land use and cover, built-up density, building heights, and urban greenery. The trained model is subsequently applied to city-wide available land use data to enable spatially high-resolution mapping and prediction of local UHIs. We test the prediction accuracy of the model against different sensor network layouts in terms of the spatial distribution, the number, the location, and the random failure of individual sensors to provide guidance for optimal sensor network configuration and the transfer to other cities. Finally, we demonstrate the possibilities of simulating the effects of local countermeasures by feeding the trained model with alternative local urban configurations.
Item URL in elib: | https://elib.dlr.de/204006/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Conference or Workshop Item (Speech) | ||||||||||||||||||||||||||||
Title: | Deep learning-based mapping of urban heat islands | ||||||||||||||||||||||||||||
Authors: |
| ||||||||||||||||||||||||||||
Date: | September 2023 | ||||||||||||||||||||||||||||
Refereed publication: | No | ||||||||||||||||||||||||||||
Open Access: | No | ||||||||||||||||||||||||||||
Gold Open Access: | No | ||||||||||||||||||||||||||||
In SCOPUS: | No | ||||||||||||||||||||||||||||
In ISI Web of Science: | No | ||||||||||||||||||||||||||||
Status: | Published | ||||||||||||||||||||||||||||
Keywords: | urban heat islands (UHI), sensor networks, modelling, deep learning (DL), spatial prediction | ||||||||||||||||||||||||||||
Event Title: | 23rd European Colloquium on Theoretical and Quantitative Geography | ||||||||||||||||||||||||||||
Event Location: | Braga, Portugal | ||||||||||||||||||||||||||||
Event Type: | international Conference | ||||||||||||||||||||||||||||
Event Start Date: | 14 September 2023 | ||||||||||||||||||||||||||||
Event End Date: | 17 September 2023 | ||||||||||||||||||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||
HGF - Program: | Space | ||||||||||||||||||||||||||||
HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||
DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||
DLR - Research theme (Project): | R - Remote Sensing and Geo Research | ||||||||||||||||||||||||||||
Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institutes and Institutions: | German Remote Sensing Data Center > Geo Risks and Civil Security | ||||||||||||||||||||||||||||
Deposited By: | Leichtle, Tobias | ||||||||||||||||||||||||||||
Deposited On: | 13 May 2024 10:58 | ||||||||||||||||||||||||||||
Last Modified: | 13 May 2024 10:58 |
Repository Staff Only: item control page