elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Deep learning-based mapping of urban heat islands

Herold, Hendrik und Reuschenberg, David und Meiers, Thomas und Leichtle, Tobias und Handschuh, Jana und Petry, Lisanne (2023) Deep learning-based mapping of urban heat islands. 23rd European Colloquium on Theoretical and Quantitative Geography, 2023-09-14 - 2023-09-17, Braga, Portugal.

Dieses Archiv kann nicht den Volltext zur Verfügung stellen.

Kurzfassung

Urban heat islands pose a serious problem for urban populations worldwide. In the view of global warming, cities face the challenge of counteracting the increasing overheating of their densely built centres during summer heat waves. In order to be able to take efficient countermeasures, city administrations and urban planners need to know the cooling effect of individual measures. However, empirical data on the effects or possibilities of ex-ante simulations of planned actions are often lacking. To support urban planners with this task, we propose a deep learning-based approach to high resolution mapping and prediction of local UHIs. For this, we employ a dense medium-cost sensor network distributed throughout the city of Dresden, Germany. With the gained temperature sensor measurements, we train a DL model against various data from the environment of the sensors, such as land use and cover, built-up density, building heights, and urban greenery. The trained model is subsequently applied to city-wide available land use data to enable spatially high-resolution mapping and prediction of local UHIs. We test the prediction accuracy of the model against different sensor network layouts in terms of the spatial distribution, the number, the location, and the random failure of individual sensors to provide guidance for optimal sensor network configuration and the transfer to other cities. Finally, we demonstrate the possibilities of simulating the effects of local countermeasures by feeding the trained model with alternative local urban configurations.

elib-URL des Eintrags:https://elib.dlr.de/204006/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Deep learning-based mapping of urban heat islands
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Herold, Hendrikh.herold (at) ioer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Reuschenberg, Daviddavid.reuschenberg (at) hhi.fraunhofer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Meiers, Thomasthomas.meiers (at) hhi.fraunhofer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Leichtle, Tobiastobias.leichtle (at) dlr.dehttps://orcid.org/0000-0002-0852-4437NICHT SPEZIFIZIERT
Handschuh, JanaJana.Handschuh (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Petry, Lisannel.petry (at) ioer.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:September 2023
Referierte Publikation:Nein
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Nein
In ISI Web of Science:Nein
Status:veröffentlicht
Stichwörter:urban heat islands (UHI), sensor networks, modelling, deep learning (DL), spatial prediction
Veranstaltungstitel:23rd European Colloquium on Theoretical and Quantitative Geography
Veranstaltungsort:Braga, Portugal
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:14 September 2023
Veranstaltungsende:17 September 2023
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Fernerkundung u. Geoforschung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Deutsches Fernerkundungsdatenzentrum > Georisiken und zivile Sicherheit
Hinterlegt von: Leichtle, Tobias
Hinterlegt am:13 Mai 2024 10:58
Letzte Änderung:13 Mai 2024 10:58

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.