elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

PLANES4LOD2: Reconstruction of LoD-2 building models using a depth attention-based fully convolutional neural network

Schuegraf, Philipp und Shan, Jie und Bittner, Ksenia (2024) PLANES4LOD2: Reconstruction of LoD-2 building models using a depth attention-based fully convolutional neural network. ISPRS Journal of Photogrammetry and Remote Sensing, 211, Seiten 425-437. Elsevier. doi: 10.1016/j.isprsjprs.2024.04.015. ISSN 0924-2716.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
6MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0924271624001758#d1e895

Kurzfassung

Level of detail (LoD)-2 reconstruction is an inevitable task in digital twin-related applications such as disaster management, flood simulation, landslide simulation and solar panel recommendation. However, there is a lack of capable methods that can exploit fine details in RGB imagery and mitigate noise in photogrammetric digital surface models (DSMs). Our investigation is focused on the use of roof planes to achieve a geometrically complete and correct, and topologically consistent LoD-2 building reconstruction. Using UNet with the EfficientNet-B3 backbone, the developed approach starts with jointly predicting building sections and roof planes from the orthorectified RGB imagery and a photogrammetric DSM. The detected sections and planes are then vectorized by employing tree search and simplified with the Douglas Peucker algorithm. Subsequently, height values from the noisy input DSM and the vectorized image-based (and simplified) roof planes are used to derive 3D-planes. Finally, the building model is formed by computing plane intersections as the ridge lines. This study demonstrates that a well-designed depth attention module (DAM), which is the bottleneck of the UNet, can achieve a very good use of both spectral and depth features. The resultant 1-to-n correspondence between building section and roof plane benefits accurate and consistent building model reconstruction. Furthermore, it leads to a superior generalization capability of the proposed method. Experiments with 1437 buildings from the cities Cologne and Braunschweig, Germany, demonstrate the success of the proposed workflow in reconstructing compound buildings with complex roof structures. The achieved geometric mean absolute error (MAE) is 1.06 m and 0.24 m respectively. Comprehensive comparative evaluations showcase the superiority of the approach in terms of geometric completeness and accuracy, and topological consistence with. The improvement over SAT2LOD2 (Gui and Qin, 2021) is 1.12 m in Cologne (data accessible at https://github.com/dlrPHS/GPUB) and 0.47 m in Braunschweig in geometrical MAE.

elib-URL des Eintrags:https://elib.dlr.de/204005/
Dokumentart:Zeitschriftenbeitrag
Titel:PLANES4LOD2: Reconstruction of LoD-2 building models using a depth attention-based fully convolutional neural network
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Schuegraf, PhilippPhilipp.Schuegraf (at) dlr.dehttps://orcid.org/0000-0003-0836-9040158635978
Shan, Jiejshan (at) purdue.eduNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Bittner, KseniaKsenia.Bittner (at) dlr.dehttps://orcid.org/0000-0002-4048-3583NICHT SPEZIFIZIERT
Datum:25 April 2024
Erschienen in:ISPRS Journal of Photogrammetry and Remote Sensing
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:211
DOI:10.1016/j.isprsjprs.2024.04.015
Seitenbereich:Seiten 425-437
Verlag:Elsevier
ISSN:0924-2716
Status:veröffentlicht
Stichwörter:AI4BuildingModelling, Building reconstruction, Images, Digital surface model, Instance segmentation, Depth attention module
HGF - Forschungsbereich:keine Zuordnung
HGF - Programm:keine Zuordnung
HGF - Programmthema:keine Zuordnung
DLR - Schwerpunkt:Digitalisierung
DLR - Forschungsgebiet:D DAT - Daten
DLR - Teilgebiet (Projekt, Vorhaben):D - Digitaler Atlas 2.0, R - Optische Fernerkundung, V - V&V4NGC - Methoden, Prozesse und Werkzeugketten für die Validierung & Verifikation von NGC
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Schuegraf, Philipp
Hinterlegt am:29 Apr 2024 10:54
Letzte Änderung:29 Apr 2024 11:45

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.