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A B S T R A C T

Level of detail (LoD)-2 reconstruction is an inevitable task in digital twin-related applications such as disaster
management, flood simulation, landslide simulation and solar panel recommendation. However, there is a lack
of capable methods that can exploit fine details in RGB imagery and mitigate noise in photogrammetric digital
surface models (DSMs). Our investigation is focused on the use of roof planes to achieve a geometrically
complete and correct, and topologically consistent LoD-2 building reconstruction. Using UNet with the
EfficientNet-B3 backbone, the developed approach starts with jointly predicting building sections and roof
planes from the orthorectified RGB imagery and a photogrammetric DSM. The detected sections and planes are
then vectorized by employing tree search and simplified with the Douglas Peucker algorithm. Subsequently,
height values from the noisy input DSM and the vectorized image-based (and simplified) roof planes are
used to derive 3D-planes. Finally, the building model is formed by computing plane intersections as the
ridge lines. This study demonstrates that a well-designed depth attention module (DAM), which is the
bottleneck of the UNet, can achieve a very good use of both spectral and depth features. The resultant
1-to-n correspondence between building section and roof plane benefits accurate and consistent building
model reconstruction. Furthermore, it leads to a superior generalization capability of the proposed method.
Experiments with 1437 buildings from the cities Cologne and Braunschweig, Germany, demonstrate the success
of the proposed workflow in reconstructing compound buildings with complex roof structures. The achieved
geometric mean absolute error (MAE) is 1.06m and 0.24m respectively. Comprehensive comparative evaluations
showcase the superiority of the approach in terms of geometric completeness and accuracy, and topological
consistence with. The improvement over SAT2LOD2 (Gui and Qin, 2021) is 1.12m in Cologne (data accessible
at https://github.com/dlrPHS/GPUB) and 0.47m in Braunschweig in geometrical MAE.
1. Introduction

Urbanization is one of the mega-trends that pose massive challenges
for humanity. Many of these challenges are linked to buildings, the
main structural elements of cities. From disaster management, flood
simulation, landslide simulation to solar panel recommendation, all
need precise knowledge of building locations, dimensions and appear-
ances. A 3D building model at level of detail (LoD)-2, according to the
CityGML standard (Kolbe et al., 2005), is required in those applications.
One possible way to obtain LoD-2 city models is to scan these structures
with terrestrial laser scanning. Yet, this is a very time and energy con-
suming approach, and cannot quickly take into account changes in the
housing stock of a city or historic buildings in large quantities. Laser-
scanning from the air involves a lidar sensor, which provides robust
geometrical information but lacks spectral information and is much
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more expensive and less efficient than an optical camera. Photos from
multiple angles of a scene allow the derivation of a photogrammetric
digital surface model (DSM). Although it is more noisy than a Lidar
DSM, it is less cost-intensive and accompanied by spectral information.
To make use of these data, a key step is to extract features from them.
Conventional methods rely on hand-crafting such features to detect
buildings and their components (Nex and Remondino, 2012; Arefi
and Reinartz, 2013; Peters et al., 2022), but these features are often
not robust to strong variations in the data. On the other hand, deep
learning allows to automatically learn features from high-dimensional
data, making it ideal for image recognition in remote sensing.

Although several studies have carried out LoD-2 reconstruction from
airborne sensor data (Nex and Remondino, 2012; Arefi and Reinartz,
2013; Alidoost et al., 2019; Gui and Qin, 2021; Peters et al., 2022;
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Lussange et al., 2023) only few of them use deep learning (Alidoost
et al., 2019; Gui and Qin, 2021; Lussange et al., 2023) and none of
them predicts the main planar components (i.e. roof planes) of each
roof, directly based on an image and photogrammetric DSM. As such,
there is a need to uniquely identify building sections even if they have
common borders. Note that we regard building sections as parts of a
building with distinguishable roof-structure according to a single roof
type.

The work in this paper extends our previous work reported in Schue-
graf et al. (2023a). In that paper, we introduced a dataset for instance
segmentation of buildings and their respective roof planes, named
Roof3D. Along with the data, we presented a method that jointly
segments building sections and roof planes using a Unet with a ResNet-
34 backbone. Although this method showed promising results when
operating solely on the image data, integrating the DSM led to a drop
in performance. In the current paper, we will use a depth attention
module (DAM) to improve the prediction performance for both building
sections and roof planes. Here, attention refers to a mechanism that
models the interactions in a feature map by learning weights for
computing a weighted sum of the input. In our case, the weights are
calculated from DSM features. We show that the Efficient-NetB3 is a
more suitable backbone for the task at hand. In the meantime, we
are able to reduce the number of primitive classes in the prelimi-
nary semantic segmentation task from 5 to 4 by removing the outer
boundary of building. Additionally, we make use of building sections
and planes to derive an LoD-2 reconstruction of our test region in
Cologne, Germany. To demonstrate the generalization capability of our
method to dissimilar architectural styles and geographical locations,
we perform an inference on a separate test region in Braunschweig,
Germany.

The rest of this paper is organized as follows. In Section 2, we
provide an overview of existing works, draw a boundary to previ-
ous research, and highlight our contributions. Section 3 describes our
method, noted as PLANES4LOD2, in detail. In Section 4, we explain the
data we used and the experimental scheme we employed to evaluate
our method. Section 5 includes the qualitative and quantitative results
of the experiments. Section 6 discusses limitations of our method and
recommends future improvements. Finally, Section 7 concludes this
paper and presents an outlook.

2. Related works

2.1. Building instance segmentation

Numerous studies address the challenge of extracting rooftop struc-
tures. To illustrate, the PolyMapper approach (Li et al., 2019) directly
forecasts buildings and road networks in vector form, but its efficacy
on the CrowdAI dataset (Mohanty et al., 2020) is not satisfactory.
Conversely, approximating shapes in images with polygons (ASIP) (Li
et al., 2020) surpasses the performance of PolyMapper. ASIP initiates
polygons by segmenting the image into convex cells, followed by poly-
gon refinement through an energy function. This function minimizes
disparities between each polygon’s fidelity to the input image and its
complexity.

Another method based on frame field learning for enhancing rooftop
polygonization is outlined in Girard et al. (2021). The authors train
the network to predict building and building border classifications,
alongside the frame field representing possible tangent directions at
each border pixel. The frame field is employed for regularization during
training and can facilitate the polygonization process. Notably, this
frame field learning approach disregards the use of DSM.

Furthermore, various endeavors address the challenge of segment-
ing building sections. PolyWorld (Zorzi et al., 2022) even surpasses
the achievements of Girard et al. (2021) and PolyMapper on the
CrowdAI dataset (Mohanty et al., 2020) by training layered models for
multiple building polygonization sub-tasks. However, PolyWorld falls
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short in predicting distinct roof sections. This specific issue is delineated
in Schuegraf et al. (2023b), which first segments satellite images into
background, buildings, and touching borders. Mathematical morphol-
ogy is then utilized to refine and transform these results into instance
segments. In comparison with the Mask-R-CNN (He et al., 2017), the
approach of Schuegraf et al. (2023b) is focused on touching borders
and produces seamlessly interconnected neighboring building sections.
Consequently, this method proves suitable for forecasting individual
building rooftops, yet it does not deduce roof planes.

2.2. LoD-2 reconstruction

The derivation of roof planes from imagery and/or height infor-
mation is often tightly connected to the reconstruction of buildings in
LoD-2. Hence, roof plane segmentation is studied in terms of a sec-
ondary task for LoD-2 reconstruction. Therefore, we do not distinguish
the works dedicated to LoD-2 reconstruction from those dedicated to
roof plane segmentation.

Reconstructing buildings in LoD-1 is a well-studied field (Schue-
graf et al., 2023b; Yu et al., 2021; Dukai et al., 2019; Peters et al.,
2022; Bagheri et al., 2019), whereas the LoD-2 reconstruction has
received relatively limited attention in remote sensing research. Nex
and Remondino (2012) presented a study that does not involve machine
learning but depends on manually designed features to recreate 3D
building rooftops. This approach relies on utilizing the near-infrared
channel, which may not be universally available. Additionally, the
method struggles to accurately handle highly complex building struc-
tures. Arefi and Reinartz (2013) also employ a learning-free technique
to create LoD-2 building reconstructions by utilizing both the DSM and
the orthorectified image. Despite generating improved regular recon-
structed buildings, this learning-free approach depends on manually de-
signed features and consequently lacks robustness when encountering
significant variations in the input data.

Peters et al. (2022) proposed a method for the reconstruction of
buildings in LoD-2 with building sections and lidar point clouds as
input. They use a region growing algorithm to partition the footprints
into roof planes and detect their intersection lines.

Another work that relies on normalized point clouds for LoD-2
reconstruction is that of Li and Shan (2022), where building primitives
from a list of rooftypes are optimized given the point cloud at hand.
In this paper, we use a fully convolutional neural network (FCN) to
extract building sections and roof planes first and then pair them
with a normalized photogrammetric DSM for LoD-2 reconstruction.
Furthermore, we rely on RGB image and raster DSM information.

In the study conducted by Alidoost et al. (2019), a solitary aerial
image is employed to create LoD-2 building models. Their methodol-
ogy involves initially training two distinct neural networks: one for
estimating building heights and the other for extracting roof features
such as eaves, ridges, and hips. Subsequently, a model-based technique
is utilized to generate 3D building models. Recently, LoD-2 recon-
struction was performed using deep learning methods by Lussange
et al. (2023), that use two consecutive Mask-RCNNs, called keypoint
inference by segmentation (KIBS). The first Mask-RCNN performs roof
plane segmentation, while the second detects roof plane corners and
their respective heights in a categorical manner. Although the LoD-2
reconstruction results look promising, the resulting 3D geometries are
not necessarily connected to individual buildings. Furthermore, KIBS is
dependent on the oblique view image and hence does not generalize to
dissimilar viewing angles than those in the training set. Even though
learning-based approaches can achieve consistent city models, it is
worth noting that the accuracy of the predicted heights solely from an
image remains to be a potential limitation. Therefore, there is a need to
use heights estimated by robust stereo matching for 3D reconstruction.

In Gui and Qin (2021), buildings are segmented by a semantic
segmentation neural network. LoD-2 models are derived using learning-
free methods and allowing the integration of open street map (OSM)
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Table 1
Memory requirements of a forward and backward pass using the cross entropy loss on
an NVIDIA Titan RTX GPU with 24 190 MB memory and the PyTorch deep learning
library in python. We provide the memory requirement for batch size 4. The numbers
are obtained by performing the computations for batch size 2 and multiplying them
by 2. The size of each patch is 512 pixels in width and height.

Model Modality Memory requirements

SkipFuse-Unet-3+ RGB+DSM 44.0 GB
UResNet34 RGB 4.0 GB
EfficientUnetB3 RGB 5.7 GB
DepthAtt-EfficientUnetB3
channel & spatial

RGB+DSM 5.9 GB

data. Their method is also based on an ortho image and a DSM as input.
Different from Gui and Qin (2021) that uses a rule-based approach,
we train the network to predict the separation lines between building
sections for improved generalization and robustness. In addition, we
also learn the prediction of roof planes, whereas roof-type based models
are fitted in Gui and Qin (2021). Gui et al. (2022) provide software as
open access, which they describe in detail. This allows comparison with
our method.

2.3. FCN architecture

FCNs are convolutional neural networks (CNNs) without fully con-
nected layers. They usually are comprised of two parts, an encoder and
a decoder. The encoder, also known as the backbone, is often chosen to
be a ResNet (He et al., 2016). It has been successfully utilized for many
image recognition tasks, including building segmentation (Liu et al.,
2020). Yet, the EfficientNet backbone could improve the performance
of ResNet, even requiring lower computational resources (Tan and Le,
2019). Furthermore, EfficientNet exists in different sizes from B0, the
smallest, to B7, the largest. The decoder of FCNs often contains as
many upsampling layers as downsampling operations in the encoder,
connecting levels of identical spatial resolution in the encoder and
decoder by skip-connections. This scheme was first introduced in the
Unet architecture (Ronneberger et al., 2015). In contrast to the Unet,
Unet-3+ (Huang et al., 2020) makes use of the feature maps at different
levels of resolution in multiple different skip-connections at the same
time. This way, the information flow between the encoder and decoder
is even larger than in the Unet. In Schuegraf et al. (2023b), the authors
have leveraged the SkipFuse-Unet-3+ architecture for the segmentation
of building sections. This modified design demonstrated superiority
over other architectures compared in that study. From Table 1 we
can observe, that for the forward and backward pass, using only the
simple cross entropy loss, our NVIDIA Titan RTX GPU with 24 190
MB memory could not meet the computation requirement. Hence,
we could not further investigate the SkipFuse-Unet-3+ architecture
for the task of roof plane extraction, because we could not train
it properly. Instead, we used the UResNet34 as a baseline, since it
had been successfully employed for building section segmentation and
roof plane segmentation in Schuegraf et al. (2023a) and compared to
the promising EfficientUnet at different scales (Baheti et al., 2020).
The SkipFuse scheme to fuse two different data sources, using two
separate encoders and one joint decoder, was applied to remote sensing
by Henry et al. (2021). Even though it has shown promising results
for building section segmentation on some datasets (Schuegraf et al.,
2023b), it did not lead to an improvement in the overall performance
of joint building section segmentation and roof plane extraction on the
Roof3D dataset (Schuegraf et al., 2023a).

2.4. Attention in building segmentation

In recent years, different flavors of attention have been imple-
mented for building segmentation. One such work is Chen et al. (2021),
where the authors use self-attention for the semantic segmentation
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of buildings in optical remote sensing imagery. In Dai et al. (2023),
the authors use a location channel attention module to improve the
segmentation of building edges in building and water segmentation.
Another work that uses a combination of spatial and channel atten-
tion is Pan et al. (2019). Besides these cases of using attention in
CNNs modules, Sun et al. (2022) use a multi-resolution transformer
that heavily depends on the attention mechanism for building and
road segmentation. In Wang et al. (2022), a hybrid model combines
hierarchical feature extraction of CNNs with global context modeling
of transformers for urban scene semantic segmentation. Yet, all works
introduced here use only spectral features for attention computations.
In contrast, we will show that the introduction of DAM can utilize the
height information to extract salient regions in the scene.

2.5. Contributions

Based on the above literature review, we introduce a new approach,
PLANES4LOD2, which has the following contributions:

• It predicts building sections and roof planes jointly, such that each
roof plane is uniquely connected to a building section.

• It utilizes the predicted building sections and roof planes to
achieve a complete LoD-2 reconstruction, which is represented
both as a 3D shapefile and an LoD-2 DSM.

• A special attention module, DAM, is able to effectively and effi-
ciently utilize the geometric features of a photogrammetric DSM
in a Unet architecture with an EfficientNetB3 backbone.

• By using two independent datasets, we show the superiority
of the combination of spatial and spectral attention. Further-
more, we demonstrate the generalization capability of our ap-
proach to a test region that is dissimilar in architectural style and
geographical location from the primary test region.

3. Methods

We will first give an overview of our workflow, the PLANES4LOD2
method, and then describe its three major steps, including instance
segmentation, polygonization and LoD-2 reconstruction.

3.1. Overview

The LoD-2 reconstruction of buildings can be achieved using three
main inputs: (1) building sections, (2) building planes and (3) a nor-
malized digital surface model (nDSM).

The definition of building section is often ambiguous. It often refers
to a building that has a primitive roof structure, but it can also be
interpreted as the building belonging to a building address. In the end,
the definition is tightly connected to the ground truth. The data from a
public source that we use for training is based on the address definition.
On the other hand, addresses are not always visibly discernible. Hence,
for the hand-labeled data in the inference, we use the roof primitive
definition. In the rest of the paper, we also refer to building section as
a roof.

The nDSM is obtained by subtracting a DTM, acquired from a public
source, from the photogrammetric DSM. We derive the polygons of
building sections and building planes by a two-step procedure. The first
step consists of passing an RGB image together with a photogrammetric
DSM to FCN, which then produces a 4-class segmentation map. The
four classes are background, separation lines between building sections,
separation lines between roof planes that do not lie at the junctions
between sections, and building segments. In the second step, holes in
the line classes are filled using morphological dilation. Then, raster
instances are obtained using the watershed transform. Afterwards, the
resulting raster instances are polygonized and simplified. As the last
step, the polygons and the nDSM are used to generate the LoD-2 model.
In that step, random sample consensus (RANSAC) is used to fit 3D
roof planes, while ridge lines are generated by intersecting roof planes.
Fig. 1 shows the overall workflow of PLANES4LOD2 as described
above.
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Fig. 1. The overall workflow of PLANES4LOD2. The RGB imagery and DSM patches are passed to Unet to produce a 4-class map. Polygonization yields building sections and roof
planes. Using an external DTM, LoD-2 reconstruction generates a vectorized 3D building model.
Fig. 2. Our proposed DepthAtt-EfficientUnetB3 architecture. The EfficientNet-B3 backbone extracts features from the RGB data, which are then enriched in the DAM module by
DSM information. The decoder reconstructs geometrical details to produce a 4-class map.
3.2. Network architecture

For the task of building section segmentation and roof plane seg-
mentation, UResNet34 has been leveraged in Schuegraf et al. (2023a).
Yet, this architecture has multiple drawbacks. First of all, the ResNet
architecture has been outdated by the success of the EfficientNet ar-
chitecture. Second, UResNet34 does not gain from the inclusion of
height information, since neighboring buildings may not vary in height,
but only in spectral appearance. Thereby, the network is confronted
with confusing information. This observation also holds when includ-
ing the SkipFuse-scheme to the UResNet34 (Schuegraf et al., 2023a).
Consequently, we propose the DepthAtt-EfficientUnetB3 architecture.
In Fig. 2, the individual parts of our architecture are outlined. The first
part of the name DepthAtt refers to an attention mechanism that we call
DAM, which is in the center of Fig. 2. DAM is applied at the last layer
of the encoder of a Unet architecture. It receives a photogrammetric
DSM patch as the input. DAM uses two different attention mechanisms
based only on the DSM, leveraging height features at the deep part
of the network. We apply a sequence of strided convolutional layers,
ReLU activations and maximum pooling layers to the DSM, as is vi-
sualized in the upper part of Fig. 3. The convolution operations allow
automatic learning on features from the raw height information. ReLU
introduces non-linearity to the network. The stride in the convolutions
and the maximum pooling layers bring the height features to the same
resolution as the feature maps of the bottleneck of the image network.
These height features are then used in two types of attention layers.
Both attention layers consist of a convolutional layer followed by a
sigmoid activation. Yet, one of the attention layers uses a channel-
wise convolution to place attention on features other than regions,
whereas the other attention layer places the attention on pixels, to
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enhance features in certain spatial locations, which are derived from
the DSM. DAM enables fusion of the RGB data and DSM at a coarse
spatial resolution (see lower part of Fig. 3), namely at the bottleneck.
Hence, small spatial shifts between the two inputs affect little to the
extracted feature maps. Moreover, since the DSM is only used in the
attention mechanism, the network focuses on the features from the
RGB image, but can use height features to suppress noise and guide
the training process. The EfficientUnetB3 receives only an RGB image
patch and extracts features sequentially in the encoder, leveraging the
EfficientNetB3 architecture (Tan and Le, 2019), which is shown on
the left side of Fig. 2. As for the decoder (right part of Fig. 2), what
we used is similar to Unet in Baheti et al. (2020). This includes skip-
connections to allow for better information flow from the encoder to
the decoder. Our implementation of the EfficientUnetB3 is mostly based
on an implementation that is publicly available on github.1 During the
training, we use a softmax activation, since it is required by our loss
functions. When doing inference, we use the argmax of the network
outputs to produce class predictions for each pixel.

3.3. Polygonization

Although the raster results are valuable for some applications, most
further applications, e.g. LoD-2 reconstruction, require vector data as
the input. Hence, we convert our 4-class maps to two different vector
layers. Note that when we refer to simplification algorithms in the
following paragraphs, we always simplify common borders of polygons
and the rest of the polygons separately to avoid irregular gaps between

1 https://github.com/zhoudaxia233/EfficientUnet-PyTorch.

https://github.com/zhoudaxia233/EfficientUnet-PyTorch
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Fig. 3. The structure of DAM. The shadowed area is not part of DAM but is visualized to show the origin of the spectral features. Conv and Conv/2 refer to convolutional layers
with stride 1 and 2. ReLU means rectified linear unit, BN represents batch normalization, and MaxPool/4 refers to a maximum pooling layer with stride 4. AAP refers to adaptive
average pooling and Sig stands for the sigmoid function, which maps its inputs to the range [0, 1]. The spatial attention map is visualized with 32-times the original resolution
using bi-cubic interpolation.
neighboring instances. Section polygons with an area smaller than 4m2

are dropped, since they most likely correspond to false positive noise.

Building section layer. We achieve the separation of buildings into
sections by using the same learning-free post-processing scheme as
in Schuegraf et al. (2023b). We treat the plane separation line as part of
a section. Hence, this leaves us with three classes: background, build-
ing segment and section separation line. Then we use the watershed
transform to infer instances. As the seed for the watershed transform,
we dilate the section separation line, using a disk with radius 𝑅sec = 6
as the structuring element, and remove it from the building segment.
The mask element for the watershed transform is the inverse of the
background class raster. The surface map will be the segmentation
raster with value 0 for background, value 1 for building segment, and
value 2 for building section separation. To obtain boundary pixels,
we use tree search and simplify the resulting polygon by utilizing the
Douglas Peucker algorithm (Douglas and Peucker, 1973) with tolerance
𝜖sec = 0.5m.

Roof plane layer. For the generation of a roof plane vector layer, we
follow the same procedure as for the building section layer. The only
difference is that we reconstruct the plane separation line by using both
the building section separation and plane separation as the separation
line. We again apply dilation to improve separation between sections,
but with a disk of radius 𝑅plane = 6. To simplify the roof plane polygons
with the Douglas Peucker algorithm, we use the tolerance 𝜖plane = 0.5m.

3.4. LoD-2 model generation

The next task is to generate the LoD-2 model based on our pre-
dicted roof plane geometries. As the first step, we count the number
of predicted planes of each building section. For a single plane, we
estimate the roof plane parameters (𝑎𝑖, 𝑏𝑖, 𝑐𝑖, 𝑑𝑖) using RANSAC (Fischler
and Bolles, 1981). The parameters define a plane with the equation
𝑎𝑖𝑥+ 𝑏𝑖𝑦+ 𝑐𝑖𝑧+𝑑 = 0 for roof plane 𝑖. We then check whether the plane
is nearly horizontal or parallel to the xy-plane (𝑎𝑖 ∼ 0, 𝑏𝑖 ∼ 0, 𝑧𝑖 ∼ 1).
In that case, we improve regularization by assuming complete flatness
of the roof plane and average the height value of all vertices inside the
roof polygon to obtain a single height value at all vertices.

If there are two planes for a roof, we assume that it is a gable
roof. Even though not all roofs with two planes are of roof type
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gable, this assumption holds for most buildings in our datasets. We
estimate a plane for each of the roof planes using RANSAC. For plane
estimation, we sample all height values from the nDSM that lie in the
area surrounded by the roof plane polygon. Next, we use the two sets
of plane parameters (𝑎1, 𝑏1, 𝑐1, 𝑑1) and (𝑎2, 𝑏2, 𝑐2, 𝑑2) to compute their
intersection line in the point-slope expression �⃗�(𝑡) = ⃖⃖⃖⃗𝑝0 + 𝑡 × ⃖⃗𝑠, where
𝑝0 = [𝑥0, 𝑦0, 𝑧0]⊺, ⃖⃗𝑠 = [𝛿𝑥, 𝛿𝑦, 𝛿𝑧]⊺ with

𝛿𝑥 = 𝑏1𝑐2 − 𝑏2𝑐1, (1)

𝛿𝑦 = 𝑎2𝑐1 − 𝑎1𝑐2, (2)

𝛿𝑧 = 𝑎1𝑏1 − 𝑎2𝑐1, (3)

𝑥0 =

⎧

⎪

⎨

⎪

⎩

0, if 𝛿𝑥 ≠ 0
(𝑑1𝑐2 − 𝑑2𝑐1) ÷ 𝛿𝑦, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 ≠ 0
(𝑑2𝑏1 − 𝑑1𝑏2) ÷ 𝛿𝑧, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 = 0 ∧ 𝛿𝑧 ≠ 0,

(4)

𝑦0 =

⎧

⎪

⎨

⎪

⎩

(𝑐1𝑑2 − 𝑐2𝑑1) ÷ 𝛿𝑥, if 𝛿𝑥 ≠ 0
0, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 ≠ 0
(𝑑1𝑎2 − 𝑑2𝑎1) ÷ 𝛿𝑧, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 = 0 ∧ 𝛿𝑧 ≠ 0,

(5)

𝑧0 =

⎧

⎪

⎨

⎪

⎩

(𝑏2𝑑1 − 𝑏1𝑑2) ÷ 𝛿𝑥, if 𝛿𝑥 ≠ 0
(𝑑2𝑎1 − 𝑑1𝑎2) ÷ 𝛿𝑦, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 ≠ 0
0, if 𝛿𝑥 = 0 ∧ 𝛿𝑦 = 0 ∧ 𝛿𝑧 ≠ 0

(6)

and 𝑡 ∈ R. We intersect this line with the union polygon of the
two roof planes using a line search. There, we iteratively evaluate
the point-slope expression for different pairs (𝑡0, 𝑡1), check whether
the line that passes through the two resulting points �⃗�(𝑡0) and �⃗�(𝑡1)
intersects the union polygon, until we find a pair (𝑡0, 𝑡1). At the two
intersection points, we use their average height according to the point-
slope expression. The heights of the remaining vertices of the union
polygon are complemented using the initial planes parameters. Next,
we split the union polygon through the intersection line defined by
the two intersection points. As a result, we yield two roof plane 3D-
polygons with consistent height at the ridge line, i.e. avoiding vertical
jumps of elevation.

For buildings with more than two planes, we use RANSAC to
determine the plane parameters similar as for two planes. If the normal
of a roof plane indicates a non-inclined plane, we model it as a flat roof



ISPRS Journal of Photogrammetry and Remote Sensing 211 (2024) 425–437P. Schuegraf et al.
Fig. 4. Excerpt from the training data of Roof3D. The RGB imagery was captured with a GSD of 0.1m, whereas the DSM was computed with 0.5m GSD. Before being passed to
the network, both of them are resampled at 0.3m GSD using bicubic interpolation, since the ground truth is generated at 0.3m GSD.
with the average elevation at all vertices. We model the non-flat roof
planes by using their estimated plane parameters to complement the
height values at the vertices.

To complete the building models, we further include ground and
wall polygons.

4. Experiments

4.1. Data

We use two different datasets for the experiments in this paper. The
first dataset is Roof3D (Schuegraf et al., 2023a), with data from the
cities Cologne and Berlin for training and Cologne for evaluation. The
RGB imagery and photogrammetric DSMs in Roof3D are comprised of
real and synthetic pairs. The addition of the synthetic data increases the
size of the training dataset and comes along with perfectly matching
ground truth. Next to the perfect annotations of the synthetic data,
Roof3D includes two more sources of ground truth. One source in-
cludes building outlines from the German building cadastre and coarse
roof plane annotation from a semi-automatic method based on laser-
scanning. The other source is manual annotation of real image and DSM
pairs. The first testing region is that of Roof3D in Cologne, Germany,
which we use for ablation, is annotated manually and has exclusively
non-synthetic inputs. See Fig. 4 for a visualization of an area in the
training data. Furthermore, the testing region does not geographically
overlap with the training data. Refer to Schuegraf et al. (2023a) for
further details about Roof3D. For the construction of a reference LoD-2
DSM, we use public data.2 This reference data stems from a semi-
automatic method that uses cadastre data and laser scanning, which
often leads to erroneous annotations. The testing set of Roof3D orig-
inates from the same flight campaign as some of the images used for
training.

As for our second dataset, showing a part of the city Braunschweig,
Germany, is solely used for testing and stems from a different flight
campaign, with different lighting conditions, architectural styles and
viewing angles, leading to dissimilar artefacts in the orthorectified
imagery. We use the same tiling scheme for all our tests as in Roof3D.
Both the RGB data and DSM in the two datasets have 0.3m GSD after
resampling.

4.2. Training details

It is important to train an FCN according to the requirements of the
task at hand. One important aspect is the choice of the loss function,
which defines the learning objective together with the ground truth.
We use the weighted cross-entropy loss, which is a standard choice for
semantic segmentation tasks, with weight 1 for the background class,
6 for the roof plane separation, 6.2 for the building section separation

2 https://www.opengeodata.nrw.de/produkte/geobasis.
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and 1.5 for the building segment class. We obtained these values by
using the median frequency weighting heuristic

w𝑐𝑙 =
freq𝑚
freq𝑐𝑙

, (7)

where freq𝑚 is the median of the frequencies of pixels of each class
and freq𝑐𝑙 is the pixel frequency of class 𝑐𝑙. However, the cross-entropy
loss is known to generate models producing blurry objects. To obtain
sharper object boundaries, we combine the cross-entropy loss with
the generalized dice loss (Sudre et al., 2017), which has inverse fre-
quency class weights. Where noted (‘‘Topo’’) we also use the topological
loss (Mosinska et al., 2018) to regularize the semantic raster output of
the respective network. Topological loss was previously applied to reg-
ularize building footprints (Zhang et al., 2020; Schuegraf et al., 2023b).
We apply it to the building segment class (weighted with 0.05 in the
loss function) and the union of building section separation and roof
plane separation lines (0.1), as two separate terms in the loss function.
As the optimization algorithm, we leverage AdamW (Loshchilov and
Hutter, 2019) with weight decay of 0.0001, as it is a common choice
for training FCNs.

4.3. Evaluation metrics

For evaluation, we use two kinds of metrics. The first ones are for
the evaluation in 2D, and the second in 3D.

Metrics 2D. To quantitatively evaluate the two instance segmentation
tasks, building section and roof plane segmentation, we use average
precision (AP) and average recall (AR). The harmonic mean of these
two is

𝐹1𝐼𝑁𝑆𝑇 = 2 × AP × AR
AP + AR . (8)

AP and AR are two commonly used metrics for instance segmen-
tation. The two metrics highly depend on the overlap between the
predicted instances and ground truth instances and are thus highly
discriminative. Furthermore, ambiguous ground truth can lead to low
values of these metrics. AP focuses on the quality of the predicted
results by considering both precision and recall, while AR focuses solely
on the proportion of relevant items that are successfully retrieved.
Hence, AR responds better to over-segmenting methods, whereas AP
has a higher score on under-segmenting methods. Both metrics are
based on the polygonized results and polygonized ground truth. Since
these metrics only give insight to quantitative aspects of the results, we
also carry out a visual inspection for qualitative evaluation in some of
the experiments.

Metrics 3D. For the quantitative evaluation of the reconstructed LoD-2
DSM with our and reference methods, we use the root-mean-squared
error (RMSE)

RMSE =

√

∑

𝑝 |ℎ̂𝑝 − ℎ𝑝|
2

𝑁
, (9)

where 𝑝 is the respective pixel, 𝑁 is the total number of pixels, ℎ̂𝑝 is the
predicted elevation at pixel 𝑝 and ℎ is the reference elevation at pixel
𝑝

https://www.opengeodata.nrw.de/produkte/geobasis
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Table 2
Results of various models for the building section segmentation task on the Roof3D dataset. ↑ indicates that the higher values of the metrics
correspond to better quality.

Architecture Modality 𝐴𝑃 ↑ 𝐴𝑅 ↑ 𝐹1𝐼𝑁𝑆𝑇 ↑

UResNet34 RGB 0.183 0.371 0.245
Fuse-UResNet34 RGB+DSM 0.176 0.365 0.237

DepthAtt-UResNet34 channel & spatial RGB+DSM 0.201 0.390 0.265
DepthAtt-UResNet34 spatial RGB+DSM 0.179 0.365 0.240
DepthAtt-UResNet34 channel RGB+DSM 0.170 0.359 0.231
SpecAtt-UResNet34 channel & spatial RGB 0.194 0.379 0.257
SpecDepthAtt-UResNet34 channel & spatial RGB+DSM 0.183 0.359 0.242

DepthAtt-EfficientUnetB3 channel & spatial RGB+DSM 0.207 0.398 0.272

DepthAtt-EfficientUnet-B3-Topo channel & spatial RGB+DSM 0.197 0.361 0.255
𝑝. Yet, the RMSE is sensitive to the scale of the values and to outliers.
Hence, we use a more robust regression metric, mean absolute error
(MAE)

MAE =
∑

𝑝 |ℎ̂𝑝 − ℎ𝑝|
𝑁

. (10)

Another metric, which originates from stereo matching and optical
low, is the T𝑡-error

𝑡 =
1
𝑁

∑

𝑝

{

1 if |ℎ̂𝑝 − ℎ𝑝| ≥ 𝑡
0 otherwise,

(11)

which gives the percentage of pixels, where the predicted height has
an absolute deviation of more than 𝑡 from the ground truth, where 𝑡 is
expressed in meters. We use the strict T1-error and the T3-error to gain
a better overall understanding of the quality of the predictions of our
method.

4.4. Experiment descriptions

For the analysis of our method, we perform multiple sets of experi-
ments.

4.4.1. Roof3D
The public Roof3D dataset is suitable for the evaluation of algo-

rithms on the tasks of segmenting building sections and roof plane
extraction. Hence, we use it to carry out an ablation study to find the
best setting of our architecture.

Polygonization. As a baseline model, we train UResNet34 for the 4-class
semantic segmentation task using only RGB imagery. Post-processing
techniques, as outlined in Section 3, are applied to obtain building
sections and roof planes. In Schuegraf et al. (2023a), it was shown
that Fuse-UResNet34 does not improve UResNet34, even though it
has auxiliary height information as input. To address such drawbacks,
we experiment with DepthAtt-UResNet34 with channel and spatial
attention, leveraging DAM. To discern the impact of attention mech-
anisms, we evaluate DepthAtt-UResNet34 with only spatial attention,
only channel attention, and both channel and spatial attention. Spec-
tral attention uses only the features from the RGB image to derive
attention maps. In an effort to determine the efficacy of depth and
spectral attention, we introduce SpecAtt-UResNet34 with both chan-
nel and spatial attention. Additionally, we test the combination of
spectral and depth attention in SpecDepthAtt-UResNet34. Given the
success of EfficientNet in various image recognition tasks, we explore
the performance of the DepthAtt-EfficientUnetB3 with channel and
spatial attention architecture. We evaluate the EfficientNetB3 backbone
and compare them to DepthAtt-UResNet34. To enhance regulariza-
tion in the segmentation outputs, we introduce the topology loss to
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DepthAtt-EfficientUnetB3-Topo channel & spatial architecture.
LoD-2 reconstruction. We leverage DepthAtt-EfficientUnetB3-Topo
channel & spatial to derive building sections and roof planes from
pairs of RGB imagery and photogrammetric DSMs. The input pho-
togrammetric DSM is normalized using a DTM from a public source to
extract heights above ground. Then, we apply our LoD-2 reconstruction
method from Section 3.4. We use SAT2LOD2 (Gui and Qin, 2021) for
comparison to our method with the software described in Gui et al.
(2022). We feed only the ortho image and photogrammetric DSM to
SAT2LOD2, omitting the OSM data.

4.4.2. Generalization
One of the great promising properties of deep learning-based al-

gorithms is their generalization capability. To test this, we apply our
DepthAtt-EfficientUnetB3-Topo channel & spatial to a dataset that does
not geographically overlap with the Roof3D dataset. Since this dataset
stems from an entirely different campaign, this implies not only differ-
ent architectural styles, but also different viewing angles and lighting
conditions leading to a different appearance of buildings in the or-
tho image than those in the Roof3D dataset, as well as different
architectural styles.

5. Results

5.1. Roof3D

In this subsection, we compare the quantitative results as in Tables 2
and 3 and the qualitative results from a visual inspection of the models
trained and evaluated on the Roof3D dataset. The regression metrics
for the 3D reconstruction task are provided in Table 4.

5.1.1. Quantitative results

RGB-based building and roof plane segmentation. UResNet-34 success-
fully segments building sections and roof planes.

Polygonization. Comparing Fuse-UResNet34 and DepthAtt-UResNet34
channel & spatial, we observe that the latter is scoring higher metric
values. Hence, the noise suppression and feature refinement of DAM
lead to improved metrics. On the contrary, directly incorporating DSM
makes it harder for the network to focus on RGB data, which contains
the most important spectral information. Inspecting metric scores of the
three models with different depth attention settings, the combination of
channel and spatial attention outperforms spatial attention and channel
attention. Using only one of the two attention mechanisms is not
sufficient (Woo et al., 2018), but the combination of both leads to a
more effective use of the features provided by the RGB image encoder.

We observe in Table 2 that the depth attention improves the perfor-
mance of spectral attention in SpecAtt-UResNet34 channel & spatial.
The combination of spectral and depth attention in SpecDepthAtt-
UResNet34 is ranking even behind SpecAtt-UResNet34 channel & spa-
tial. The attention provided by the input RGB data is helpful, but does

not provide as much additional information as the depth attention does.
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Table 3
Results of various models in the roof plane segmentation task on the Roof3D dataset. The second-last and third-last row correspond to identical
metric values. ↑ indicates that the higher values of the metrics correspond to better quality.

Architecture Modality 𝐴𝑃 ↑ 𝐴𝑅 ↑ 𝐹1𝐼𝑁𝑆𝑇 ↑

UResNet34 RGB 0.115 0.279 0.163
Fuse-UResNet34 RGB+DSM 0.119 0.289 0.169

DepthAtt-UResNet34 channel & spatial RGB+DSM 0.127 0.295 0.178
DepthAtt-UResNet34 spatial RGB+DSM 0.100 0.267 0.146
DepthAtt-UResNet34 channel RGB+DSM 0.117 0.283 0.166
SpecAtt-UResNet34 channel & spatial RGB 0.123 0.282 0.171
SpecDepthAtt-UResNet34 channel & spatial RGB+DSM 0.109 0.265 0.154

DepthAtt-EfficientUnetB3 channel & spatial RGB+DSM 0.138 0.303 0.190

DepthAtt-EfficientUnetB3-Topo channel & spatial RGB+DSM 0.149 0.312 0.202
Fig. 5. Visualization of the 2D results on a crop of the Roof3D test region. Row (a) shows the input data. Row (b) shows the reference ground truth and (c) the prediction of
the UResNet-34. Row (d) presents the results derived from the Fuse-UResNet-34 and (e) those of the DepthAtt-UResNet34 channel & spatial. Blue ovals highlight the differences.
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
432
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Fig. 6. Visualization of the 2D results on another crop of the Roof3D test region. Row (a) shows the input data. Row (b) presents the reference ground truth and (c) the prediction
of the DepthAtt-UResNet34 channel & spatial. Row (d) shows the results of the DepthAtt-EfficientUnetB3 channel & spatial and (e) those of the DepthAtt-EfficientUnetB3-Topo
channel & spatial. Blue ovals highlight the differences. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 4
Comparison of the LoD-2 reconstruction results on the two test regions. ↓ indicates that
the lower values of the metrics correspond to better quality.

Method Dataset RMSE ↓ MAE ↓ 𝑇1 ↓ 𝑇3 ↓

SAT2LOD2 Roof3d 5.28 m 2.18 m 0.26 0.15
PLANES4LOD2 Roof3d 3.34 m 1.06 m 0.18 0.07

SAT2LOD2 Braunschweig 2.52 m 0.71 m 0.10 0.08
PLANES4LOD2 Braunschweig 1.39 m 0.24 m 0.04 0.02

Averaging the attention maps from the spectral and depth information
does not seem to be the best way to make use of both mechanisms.
We compared eight different settings of EfficientNet as the backbone
and EfficientNetB3 outperforms all other versions on both tasks. The
replacement of the ResNet34 backbone by the EfficientNetB3 backbone
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in DepthAtt-EfficientUnetB3 channel & spatial consistently outperforms
all other backbones on all metrics. The most likely reason for the
superiority of EfficientUnet over ResNet34 is its fine-grained scalabil-
ity as compared to UResNet34. This allows us to choose a properly
dimensioned feature extractor.

Training DepthAtt-EfficientUnetB3 spatial & channel with the topol-
ogy loss leads to a drop in performance on building segmentation, but
to a rise in performance on roof plane segmentation. The strength of
introducing the topology loss is that it makes the predictions visually
more similar to the ground truth. Because of the complex junctions
of separation lines between roof planes, the model profits strongly
if it is pushed to segment thin and topologically correct lines and
junctions. On the other hand, building segmentation profits more from
thicker lines, which avoids gaps better and hence leads to less missed
separations between resulting building section polygons.
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Fig. 7. The resulting 3D LoD-2 model in vector format of a scene in the Roof3D test region. The image in the top row shows an overview, whereas the bottom row gives two
detailed views.
LoD-2 reconstruction. Evaluating the LoD-2 DSM with reference to the
ground truth raster, our method achieves better values than SAT2LOD2
on all metrics, indicating more accurate geometrical results. In addi-
tion, our PLANES4LOD2 has accurate presentation about roof planes.
Furthermore, PLANES4LOD2 recognizes inner yards and can properly
handle such topological structure of buildings, whereas SAT2LOD2
regards them as parts of the buildings. All these factors demonstrate
that PLANES4LOD2 performs superior.

5.1.2. Qualitative results
Polygons. Fig. 5 visualizes the predictions of models with different
modalities and fusion strategies. We highlight multiple places where
we noted significant visual deviations. In row (e), DepthAtt-UResNet34
channel & spatial produces separation lines in the raster segmentation.
The results are more complete than in the other rows, which leads to
more accurate and regular building sections and roof plane polygons
than UResNet34 in row (c) and Fuse-UResNet34 in row (d). Fur-
thermore, Fuse-UResNet34 sometimes produces false positives. Fig. 6
presents the comparisons of the results obtained from models with
the backbone architectures ResNet-34 (row (c)) and EfficientNetB3
(rows (d) and (e)) and under the addition of the topology loss (row
(e)). In the RGB image, we highlight a rectangle by rescaling it to
the lowest 30% of pixel values, which correspond to shadows in the
original RGB image. In the highlighted box, regarding the low corre-
sponding elevation in the DSM, the visible building structure in the
middle most likely corresponds to garages. This structure is detected
as buildings by DepthAtt-EfficientUnetB3 channel & spatial, whereas
DepthAtt-UResNet34 channel & spatial segments it as background. In
most parts of the visualization, DepthAtt-EfficientUnetB3-Topo channel
& spatial produces thinner and more complete lines than the other two
models, though it sometimes fails to detect building segments. Overall,
the two models with EfficientNetB3 as backbones produce slightly more
complete separation lines.

LoD-2 model. In Fig. 7, a resulting LoD-2 model is visualized in vector
format. From Fig. 8 it becomes clear that the 3D building model of
our method looks more similar to the ground truth than the one from
SAT2LOD2. In the first row of Fig. 9, we provide a more detailed vi-
sualization of the reconstruction performed by SAT2LOD2, our method
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and the reference ground truth. The rooftops generated by SAT2LOD2
look very regular because they are based on roof type reconstruction.
This induces symmetry into the resulting roof of the building model.
Our method generates building models that are visually much closer
to the ground truth, but does not enforce symmetric properties similar
to SAT2LOD2. Furthermore, SAT2LOD2 cannot reconstruct buildings
with inner yards correctly, because it is based on binary building
segmentation. In contrast, we reconstruct buildings based on individual
sections and directly segment their roof planes. Hence, our method
can capture inner yards well, which is an advantage in scenarios with
complex building structure, as it is typical in European cities.

5.2. Generalization

To test the capability of our LoD-2 reconstruction method to adapt
to an entirely new scene with different lighting conditions and different
architectural styles, we evaluated it on a test region in Braunschweig,
Germany. We also evaluated the SAT2LOD2 method on the same data
for comparison. Quantitatively, Table 4 shows that our method scores
RMSE 1.39m, MAE 0.24m, T1 0.04 and T3 0.02, whereas SAT2LOD2
achieves RMSE 2.52m, MAE 0.71m, T1 0.10 and T3 0.08. Hence, our
method quantitatively outperforms the reference method compared by
a factor of ∼2 to 3. Since SAT2LOD2 fits roof tops based on roof type
primitives, it does not produce rooftops that are structurally accurate.
On the other hand, our method fits a plane to each segmented roof
plane polygon, which leads to more accurate, but less mathemati-
cally symmetric roof tops. Visually, in Fig. 10, both our method and
SAT2LOD2 show a reconstruction that looks quite similar to the ground
truth. Taking a closer look in the second row of Fig. 9, the impression
remains that both results are similar to the ground truth. Even though
our method also outscores SAT2LOD2 on the simple Braunschweig
test area, the advantages of PLANES4LOD2 are most significant when
studying more complex scenes like the test region of Roof3D.

6. Discussion

The quality of the LoD-2 resulting from PLANES4LOD2 is affected by
multiple factors. If there is high vegetation covering the roof plane, the
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Fig. 8. Visualization of the results of our and a reference method for LoD-2 reconstructions of the test region of Roof3D. For the visualization of height features, we use a color
mapping from blue (low) to red (high). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 9. An example building in the test region of Roof3D (first row) that is reconstructed as a large block by a reference method and reconstructed in detail in our reconstruction
and some example results in the test area in Braunschweig, Germany (second row). Both methods achieve practically identical results for simple roof shapes, as can be seen in
the second row. However, PLANES4LOD2 can handle more complex buildings as visualized in the first row.
accuracy of the associated plane parameters might be decreased. One
possible way to address this issue would be to use a separate network
to remove trees from the DSM (Bittner et al., 2019, 2020; Stucker and
Schindler, 2022). Furthermore, we do not enforce symmetry between
435
roof planes for any roof type other than for a single plane. Since we
assume the roof type to be gable for buildings with two predicted
roof planes, roof tops that have vertical gaps between roof planes will
be modeled as if they intersect at the ridge line. Buildings with roof
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Fig. 10. Visualization of the results of our and a reference method for LoD-2 reconstructions of buildings in Braunschweig. For the visualization of height features, we use a color
mapping from blue (low) to red (high). The model is trained with data from Cologne and Berlin. PLANES4LOD2 profits most from the high resolution RGB image, allowing it
to separate connected or close building sections. Furthermore, it is capable to filter noise from the DSM. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
types like hip and half-hip will not be reconstructed in a regularized
style, since we do not assure either symmetry or intersection of the
roof planes at the identical height at junctions between them. On
the other hand, primitive-based approaches like that of Li and Shan
(2022) fit roof models that are a-priori symmetrical, but are less flexible
than PLANES4LOD2. In practice, one could combine a primitive-based
approach for simple roof types with PLANES4LOD2 for the remaining
roof structures.

Further restrictions are induced by the GSD. We decided to use
0.3m. A smaller GSD leads to better visibility of the roof lines and it
would be easier to distinguish roof planes. On the other hand, it would
cause more noise, since more details are visible, which the network
would have to learn. Regarding a larger GSD, it would cause blurrier
lines and PLANES4LOD2 is sensitive to the visibility of separation lines.

We also observed that PLANES4LOD2 predicts the instances of roof
planes and building sections more accurate than what the metrics
suggest. The reason for this is that the common objects in context
(COCO)-metrics, including AP, AR and 𝐹1𝐼𝑁𝑆𝑇 we are using, are very
sensitive. For one ground truth polygon, if the highest overlap with a
predicted polygon is 0.4999, it will not be recognized as a true positive,
but a false negative. Another effect, that makes metrics underestimate,
is possible ambiguous ground truth. Many small roof planes that exist in
the ground truth can hardly be seen by bare eyes, or are so small that
even a fine-grained neural network cannot detect them as a separate
object. Moreover, the COCO-metrics compute the average precision
AP and AR not only for the threshold 0.5, but also for much higher
thresholds up to 0.95. While this is a reasonable threshold for large
buildings or large objects on multi-media imagery, it is hard to achieve
a good score in building section or roof plane segmentation. On the
other hand, those metrics are commonly used in instance segmentation
task and we argue that they are sufficient and realistic to compare
different experimental setups.

7. Conclusion

We presented PLANES4LOD2, a method that uses planar roof com-
ponents to reconstruct buildings as level of detail (LoD)-2 models. The
436
PLANES4LOD2 pipeline relies on deep learning as well as conventional
approaches to implement a full 3D reconstruction pipeline from an RGB
image, a photogrammetric digital surface model (DSM) and a digital
terrain model (DTM). The method makes use of the DSM in the novel
depth attention module (DAM) to enhance building plane prediction
and in the roof surface reconstruction. PLANES4LOD2 robustly interpo-
lates roof surfaces from sampled height values and initial roof planes.
The resulting LoD-2 building model appears visually similar, or close
to be identical to the ground truth, even when the test region contains
very complex building structures and is densely built. Furthermore, we
demonstrated the advantages of our method for LoD-2 reconstruction
compared to other software. We also evaluated PLANES4LOD2 on a
test region in a different city. The results reveal superior generalization
capability of our method being adaptive to lighting conditions and
architectural styles different from the ones the model is trained.
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