Shahi, Kasra Rafiezadeh und Camero, Andres und Eudaric, Jeremy und Kreibich, Heidi (2024) DC4Flood: A deep clustering framework for rapid flood detection using Sentinel-1 SAR imagery. IEEE Geoscience and Remote Sensing Letters. IEEE - Institute of Electrical and Electronics Engineers. doi: 10.1109/LGRS.2024.3390745. ISSN 1545-598X.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Severe flood losses have been on the rise, and this trend is expected to become increasingly prevalent in the future due to climate and socio-economic changes. Swiftly identifying flooded areas is crucial for mitigating socio-economic losses and facilitating effective recovery. Synthetic Aperture Radar (SAR) sensors are operational in all-weather, day-and-night conditions and offer a rapid, accurate, and cost-effective means of obtaining information for quick flood mapping. However, the complex nature of SAR images, such as speckle noise, coupled with the often absence of training/labeled samples, presents significant challenges in their processing procedures. To alleviate such hindrances, we can benefit from unsupervised classification approaches (also known as clustering). Clustering methods offer valuable insights into newly acquired datasets without the need for training or labeled samples. However, traditional clustering approaches are predominantly linear-based and overlook the spatial information of neighboring pixels during analysis. Thus, to attenuate these challenges, we propose a deep learning (DL)-based clustering approach for flood detection (DC4Flood) using SAR images. The primary advantage of DC4Flood over existing DL-based clustering approaches lies in its ability to capture multi-scale spatial information. This is achieved by utilizing multiple dilated convolutions with varying dilation rates and subsequently fusing the extracted multi-scale information to effectively and efficiently analyze SAR images in an unsupervised manner. Extensive experiments conducted on SAR images from six different flood events demonstrate the effectiveness of the proposed DC4Flood. The code of the work will be available at https://github.com/Kasra2020/DC4Flood.
elib-URL des Eintrags: | https://elib.dlr.de/203928/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||
Titel: | DC4Flood: A deep clustering framework for rapid flood detection using Sentinel-1 SAR imagery | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | April 2024 | ||||||||||||||||||||
Erschienen in: | IEEE Geoscience and Remote Sensing Letters | ||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||
DOI: | 10.1109/LGRS.2024.3390745 | ||||||||||||||||||||
Verlag: | IEEE - Institute of Electrical and Electronics Engineers | ||||||||||||||||||||
ISSN: | 1545-598X | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Deep Learning; Unsupervised Learning; Clustering; Convolutional Autoencoder; Remote Sensing; Sentinel-1; Synthetic Aperture Radar; Flood Detection | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Künstliche Intelligenz | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > EO Data Science | ||||||||||||||||||||
Hinterlegt von: | Camero, Dr Andres | ||||||||||||||||||||
Hinterlegt am: | 29 Apr 2024 10:39 | ||||||||||||||||||||
Letzte Änderung: | 29 Apr 2024 10:39 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags