elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Convolutional neural networks for image analysis of high-speed videos from two slab burners

Assenmacher, Oliver und Gelain, Riccardo und Rüttgers, Alexander und Petrarolo, Anna und Hendrick, Patrick (2024) Convolutional neural networks for image analysis of high-speed videos from two slab burners. Acta Astronautica (219), Seiten 931-940. Elsevier. doi: 10.1016/j.actaastro.2024.04.005. ISSN 0094-5765.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
2MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0094576524002042

Kurzfassung

High-speed video recordings of slab burner experiments were analyzed using a machine learning approach with convolutional neural networks in order to compute the regression rate of hybrid rocket fuels over time. Combustion tests of paraffin-based fuel grains performed in two different hybrid rocket slab burners were recorded with high-speed video cameras and the resulting image data are analyzed in order to determine the height of the fuel in each frame. To this end, a deep neural network with U-net architecture is trained in a supervised fashion to segment the shape of the fuel slab. It is demonstrated that this approach is more capable to segment combustion images in unsteady flow conditions than classical computer vision methods based on thresholding or edge detection. Furthermore, methods in the area of uncertainty quantification of neural networks are applied to estimate the errors in the neural network prediction to new previously unseen data. Finally, the regression rate of the fuel is computed as the rate of change of this height. This method enables automatic analysis of a large amount of video data, taking full advantage of the optical access capabilities of slab burners. Additionally, the method delivers not only the time and space average values of the fuel regression rate, but also quantifies its variation over time and over the length of the slab, providing deeper insights into the combustion mechanics of hybrid rockets.

elib-URL des Eintrags:https://elib.dlr.de/203731/
Dokumentart:Zeitschriftenbeitrag
Titel:Convolutional neural networks for image analysis of high-speed videos from two slab burners
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Assenmacher, Oliveroliver.assenmacher (at) dlr.dehttps://orcid.org/0000-0003-4614-4715NICHT SPEZIFIZIERT
Gelain, Riccardoriccardo.gelain (at) ulb.beNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Rüttgers, AlexanderAlexander.Ruettgers (at) dlr.dehttps://orcid.org/0000-0001-6347-9272NICHT SPEZIFIZIERT
Petrarolo, AnnaAnna.Petrarolo (at) dlr.dehttps://orcid.org/0000-0002-2291-2874NICHT SPEZIFIZIERT
Hendrick, Patrickpatrick.hendrick (at) ulb.beNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:Juni 2024
Erschienen in:Acta Astronautica
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1016/j.actaastro.2024.04.005
Seitenbereich:Seiten 931-940
Verlag:Elsevier
ISSN:0094-5765
Status:veröffentlicht
Stichwörter:Hybrid rockets, Combustion, Machine learning, Computer vision
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Raumtransport
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R RP - Raumtransport
DLR - Teilgebiet (Projekt, Vorhaben):R - Projekt Big-Data-Plattform [RP], R - HPDA-Grundlagensoftware
Standort: Köln-Porz
Institute & Einrichtungen:Institut für Softwaretechnologie
Institut für Softwaretechnologie > High-Performance Computing
Institut für Raumfahrtantriebe > Satelliten- und Orbitalantriebe
Institut für Raumfahrtantriebe
Hinterlegt von: Assenmacher, Oliver
Hinterlegt am:22 Mai 2024 09:19
Letzte Änderung:22 Mai 2024 09:19

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.