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A B S T R A C T

High-speed video recordings of slab burner experiments were analyzed using a machine learning approach
with convolutional neural networks in order to compute the regression rate of hybrid rocket fuels over time.
Combustion tests of paraffin-based fuel grains performed in two different hybrid rocket slab burners were
recorded with high-speed video cameras and the resulting image data are analyzed in order to determine the
height of the fuel in each frame. To this end, a deep neural network with U-net architecture is trained in a
supervised fashion to segment the shape of the fuel slab. It is demonstrated that this approach is more capable
to segment combustion images in unsteady flow conditions than classical computer vision methods based
on thresholding or edge detection. Furthermore, methods in the area of uncertainty quantification of neural
networks are applied to estimate the errors in the neural network prediction to new previously unseen data.
Finally, the regression rate of the fuel is computed as the rate of change of this height. This method enables
automatic analysis of a large amount of video data, taking full advantage of the optical access capabilities
of slab burners. Additionally, the method delivers not only the time and space average values of the fuel
regression rate, but also quantifies its variation over time and over the length of the slab, providing deeper
insights into the combustion mechanics of hybrid rockets.
1. Introduction

The development of hybrid rocket propulsion promises some advan-
tages compared to the more mature technologies of solid and liquid
propulsion systems. First, the less complex design allows for a cost
reduction in comparison to liquid engines. Second, in contrast to solid
motors, they allow for controllable thrust, including shut off and restart
capability. Furthermore, hybrid engines are safer than solid ones be-
cause the propellants are stored in two different states of matter.
However, this characteristic also leads to typically slower burning rates
in hybrid propulsion systems. Indeed, the two propellants need to gasify
and mix together in the boundary layer before reacting. For this reason,
hybrid systems that use conventional polymeric fuels often achieve
relatively low regression rate performance, which results in a low thrust
level. One viable solution is using liquefying hybrid rocket fuels, for
instance, on a paraffin basis, which are considered in the following.
Paraffin-based fuels are able to liquefy at lower temperatures and to
form a thin melt layer on the fuel surface. The high-speed oxidizer flow
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in the fuel port can break the fuel liquid layer into unstable waves,
which, in turn, break-up into droplets. The combustion of fuel droplets
outside of the boundary layer, where the main combustion process
takes place, increases the burning rate of hybrid engines [1,2].

For a better understanding of the combustion mechanics of liquefy-
ing hybrid rocket solid fuels and their relation to the regression rate,
optical investigations on the combustion behavior of paraffin-based
fuels burning with gaseous oxygen have been performed in hybrid
rocket slab burners. The essential flow phenomena can be captured
by using a high-speed camera to visualize the combustion process. The
large image dataset can be used to derive relevant secondary quantities
of interest, such as a time-dependent regression rate. The following
study focuses on optical regression rate measurements computed from
the combustion tests performed at the German Aerospace Center (DLR)
and at the Aero-Thermo-Mechanics department of the Université libre
de Bruxelles (ULB). The space and time averaged regression rate of
a fuel grain of known geometry can be measured by comparing the
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mass of the fuel before and after the combustion. There are also several
options for obtaining time- and space-dependent quantities, enabling
a better understanding of the combustion mechanics, e.g. methods
based on X-ray radiography as discussed in [3]. The slab burners
considered for this study both include an optical access, which can be
used to accurately measure the geometry of the solid fuel as it changes
during the combustion. Furthermore, by using a high-speed camera
to capture the combustion process, a high temporal resolution can be
achieved. The main challenge in using an optical approach is accurately
separating the flow field and the image background from the solid
fuel. This separation is achieved with a convolutional neural network,
using an U-Net architecture, which produces binary image masks that
indicate the shape of the solid fuel. The regression rate can be computed
from these masks by tracking the height of the fuel over time. A similar
approach is discussed in [4] for a slab burner experiment for a paraffin
wax-gaseous hybrid combustion. However, the results presented in the
following differ from the previous ones in several aspects: first, the
high-speed videos have been acquired at a frame rate of 2000 and
10,000 fps, respectively. In total, 110,000 frames have to be analyzed
and the high frame rate of the camera does not allow for using a high
intensity flash for a correct image exposure. Therefore, the obtained
images are, in general, underexposed, as the flame tends to saturate the
camera and the flame profile hides the contours of the slab. This makes
the task of separating the solid fuel from the image background a lot
more challenging for both the domain expert and the neural network.
Second, the images were captured at two different test facilities so that
the results in this study give a more realistic picture of how accurate
this method is under varying lab conditions. Third, time-dependent
regression rates are derived over a sequence of positions on the surface
of the solid fuel to allow for a better analysis of the geometric changes
over time.

The remainder of this article is organized as follows: first, the
experimental setup is described in Section 2.1. Then, in Section 2.2
the neural network model is introduced and Monte Carlo dropout, an
approach to measure the uncertainty of the model prediction, is pre-
sented. The details for the training of this neural network are given in
Section 2.3 and Section 2.4 describes how the binary masks, produced
by the neural network are processed to compute the regression rate.
Finally, Section 3.1 presents the results on the accuracy of the trained
segmentation model and Section 3.3 contains the derived regression
rate measurements.

2. Methods

2.1. Experimental setup

The results presented in this article are based on the data acquired
from two different hybrid rocket slab burners. The first batch of com-
bustion tests comes from the test complex M11 of the Institute of Space
Propulsion, German Aerospace Center (DLR), in Lampoldshausen. Fig. 1
shows a side view of the hybrid slab burner, that was adapted from a
combustion chamber set-up used in previous studies to investigate the
combustion behavior of solid fuel ramjets [5]. The optically accessible
combustion chamber has a rectangular cross-section that is 450 mm
long, 150 mm wide and 90 mm high. The pre-chamber with the flow
straighteners has a length of 450 mm, while the post chamber is
150 mm long. The selected oxidizer is gaseous oxygen. Before entering
the combustion chamber, it passes through two flow straighteners that
ensure homogeneous flow conditions in the burner. The mass flow rate
is adjusted by a flow control valve and is measured with a Coriolis flow
meter. Furthermore, an oxygen/hydrogen torch igniter is positioned at
the left bottom of the chamber. At the end of the combustion, when
the main oxidizer valve is closed, nitrogen is used for purging. No
nozzle is present at the end of the post-chamber, therefore all the tests
performed with this set-up are at atmospheric pressure. All tests are
run automatically by the test bench control system, that also triggers
932
Fig. 1. Side view of the atmospheric combustion chamber set-up at DLR.
Source: Adapted from [7].

the high-speed camera. A more detailed description of the test bench
and test settings can be found in [6].

The second test bench exploited in this research is the MOUETTE
(Moteur OptiqUe pour ÉTudier et Tester Ergols hybrides) slab burner,
developed at the Aero-Thermo-Mechanics department of the Université
libre de Bruxelles (ULB), in Brussels. The test chamber has cylindrical
cross section with two parallel optical accesses. The test section has
a maximum envelope of about 120 mm length, 75 mm width and
50 mm height. The oxidizer is again gaseous oxygen, and the mass flow
rate can be adjusted using a chocking orifice in the feed lines and by
varying the pressure of the gas fed from the reservoir. A pyrotechnic
squib is used for the ignition of the solid fuel slab, and the pressure in
the combustion chamber is maintained using a nozzle with a graphite
throat insert. These design solutions allow the test bench to operate
from atmospheric conditions up to 15 bar pressure in the chamber, to
investigate the effect of pressure on the fuel combustion. A photograph
of the test bench during a test is shown in Fig. 2, while a detailed
description of the design rationale can be found in [8].

The first set of combustion tests analyzed in this study was per-
formed at the German Aerospace Center (DLR). Three combustion tests,
selected from the tests performed in [10], have been analyzed to inves-
tigate liquid layer combustion instabilities. The test matrix is presented
in Table 1, respecting the original enumeration. All the tests performed
with this set-up were run at atmospheric combustion pressure and with
an oxidizer mass flow ranging from 50 to 100 g/s. In this way, the
influence of the oxidizer flow speed on the break-up process of the fuel
melt layer and, therefore, on the regression rate could be investigated.
Combustion tests were performed using a single-slab paraffin-based fuel
with a 30° forward facing ramp angle (see Fig. 3), in combination with
gaseous oxygen. For this analysis, only tests with plain paraffin were
considered in order to maximize the regression rate and being able
to clearly distinguish the regression of the fuel surface. Indeed, the
regression rate of the higher viscosity fuel is so low that the height and,
therefore, pixel variation of the fuel surface over the entire test duration
is below two pixels and, consequently, measuring the variation of the
regression rate over time is hardly possible with this optical approach.
All fuel slabs, produced and machined according to the same procedure,
were 200 mm long, 100 mm wide and 20 mm high. Burning time was
3 s for each test. For video data acquisition a Photron Fastcam SA 1.1
high speed video camera with a resolution of 𝑁 = 1024 × 336 pixels
was used. Due to the high frame rate of 10,000 frames per second
all relevant combustion and flow phenomena could be captured. The
shutter speed and lens aperture of the camera was adjusted for each
test, according to the test conditions (especially brightness) and to the
position of the camera.

The second set of tests taken into account for this research comes
from a test campaign conducted with the slab burner at ULB. In
particular, two tests have been selected from the campaign described
in [11], with different oxidizer mass flow and combustion chamber
pressure. The conditions of the two tests are listed in Table 1. Both
the tests have been conducted with gaseous oxygen as oxidizer and
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Fig. 2. MOUETTE test.
Fig. 3. Fuel slab configuration with initial slope on the left-hand side before (top) and after (bottom) combustion test.
Source: Adapted from [9].
Table 1
Test matrix of combustion tests run at DLR and ULB.

Test id. Burn time [s] Pressure [bar] 𝑚̇𝑂𝑥 [g/s] 𝐺𝑂𝑥 [g/cm2 s]

dlr252 3 0.98 85 1.60
dlr253 3 0.98 50 0.91
dlr254 3 0.98 50 0.91

ulb04 5 1.07 26.75 1.30
ulb08 5 10.02 59.81 2.91

with a fuel slab made of pure paraffin (Tudamelt 52/54 supplied by
H&R) with a forward facing ramp angle of 30◦, 125 mm long, 75 mm
wide and 30 mm high. The main difference between the two tests lies
in the oxidizer mass flow rate (𝑚̇) and in the combustion chamber
pressure. While test ulb04 is comparable to the DLR tests both in mass
flux (𝐺𝑜𝑥) and chamber pressure, test ulb08 has been performed at
a much higher combustion pressure. This different conditions allows
to assess the reliability and performance of the convolutional neural
network on different test conditions. The high-speed videos have been
acquired using a Photron Fastcam SA4 camera, with a resolution of 896
× 512 pixels and a frame rate of 2000 fps. The shutter speed and lens
aperture have been adjusted between tests to account for the change of
brightness due to the different conditions.

2.2. Convolutional neural networks for image segmentation

In order to compute the regression rate from the high-speed video
the fuel slab first needs to be separated from the rest of the image so
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that its height can be computed at each time-point. The task of sepa-
rating a given image into distinct regions, e.g. to separate foreground
from background or to identify the shape of objects in the image, is
called image segmentation and a convolutional neural network based on
the U-net architecture [12] is used to tackle this problem.

In general, artificial neural networks are sequences of basic trans-
formations applied to some input data, e.g. an image, that can approx-
imate complex, non-linear functions. Each basic transformation in this
sequence is called a layer and the intermediate results are called neu-
rons, features or activations depending on the context. Some of these
layers may contain free parameters, called weights, that are randomly
initialized and then optimized, using the backpropagation algorithm, to
fit the neural network to a predefined task. This optimization procedure
is called training and usually relies on a set of examples called training
data. After training the neural network can be applied to new data to
make predictions and this process is called inference.

The U-net architecture, as depicted in Fig. 4, is a fully convolutional
neural network, i.e. its weights are almost entirely in convolutional
layers. In these layers a linear sliding-window filter is applied to the
input and the values of the kernel in this filter are free parameters that
are automatically computed during training. Furthermore, the layers
are separated into an encoder and a decoder path. In the encoder
path the input image goes through a sequence of convolutional layers
and downsampling layers. In the downsampling layers a 2 × 2 non-
overlapping sliding window is moved over the input and for each
position the maximum value inside the window is computed. This
operation is called max pooling and it halves the resolution of the
intermediate results. To make up for this, the number of convolutional
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Fig. 4. U-net architecture in which the number of filters in each layer is indicated. The width and height of the input layer (left) and output layer (right) exactly corresponds
with the original resolution of the combustion images. Each 3 × 3 convolution is followed by a instance normalization layer and a LeakyReLU activation function.
filters is doubled after each downsampling layer. The results of the
encoder path, that is the final output and the intermediate results
from just before each downsampling step, are passed to the decoder
path. Starting from the results at the lowest resolution, the features
from the encoder are increased in resolution and decreased in depth
using transposed convolutions. The output is concatenated with the
encoder features at this new resolution (‘‘skip connection’’) followed by
a block of convolutional layers. This pattern is repeated until arriving
at the original resolution of the input. Finally, the last layer of the
model is a 1 × 1 convolution followed by a sigmoid function that maps
the pixelwise features to a single probability per pixel. By choosing a
threshold one can then generate a binary mask segmenting the slab.
The convolutional layers except for the very last one use 3 × 3 filters
and ‘‘same’’ padding, that is their input is padded with zeros so that
the output does not lose resolution. Moreover, they are each followed
by instance normalization, as proposed in [13], and a LeakyReLU
non-linearity (with negative slope of 0.01).

As Fig. 4 indicates, dropout is included at several places in the
architecture. Dropout is a common building block in neural networks
in which some of the results of a layer of a neural network are
dropped, i.e. their value is set to zero, with a certain probability.
Initially proposed in [14], this operation is usually used to avoid weight
configurations during training that rely on only a few neurons to
make their prediction which is a sign of overfitting on the training
data. During inference, i.e. when making predictions for new data, this
random zeroing of neurons is usually turned off and the results are
scaled appropriately to match their mean value during training. Monte
Carlo dropout introduced in [15] is a modification of this technique,
where this random aspect is kept active during inference. Consequently,
repeated evaluations of the same model on the same data can lead to
slightly different results. These differences can be used to assess the
uncertainty of the prediction.

2.3. Training details

To train a neural network on the task of segmenting the shape of the
fuel slab in the frames of the high-speed video, some training examples
have to first be created manually. Fig. 6 depicts a typical mask. Fig. 6(a)
also illustrates the three different positions along the slab that are
analyzed in this study. Since the shape of the slab changes relatively
slowly compared to the frame-rate of the high-speed cameras, each
mask is used for a small range of frames from the video. Specifically,
each mask is used for an interval of 11 frames, corresponding to a
time interval of 1.1 ms and 5.5 ms, respectively. Table 2 shows the
total number of analyzed frames and resulting number of labeled data
points that are available for each test. The time-window available for
the analysis is shorter than the total burn time (see Table 1). This is due
to the fact that, during the first milliseconds of the ignition transient,
the flame is not yet visible and fully developed along the fuel slab
length, therefore the fuel slab profile is not yet detectable. The same
applies to the shut-down transient.

This modified version of the U-net architecture [12] described in
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Section 2.2 is implemented in Pytorch for this study and trained to
Table 2
Number of analyzed frames and manually created masks for each test.

Test id. Analyzed time No. of No. of No. of
window [s] frames masks labeled frames

dlr252 2.62 26 200 12 132
dlr253 2.78 27 800 16 176
dlr254 2.88 28 800 12 132
ulb04 3.61 7223 8 88
ulb08 3.40 6800 8 88

perform the task of segmenting the fuel slab using these manually
created masks. For all experiments the AdamW optimizer, as first
proposed in [16], is used with a starting learning rate of 3 × 10−4 and
default values for all other hyperparameters. Furthermore, the learning
rate is scheduled with cosine annealing, cf. [17], without restarts or
warmup. The dropout rate of the dropout layers indicated in Fig. 4 is
fixed at 0.5 for all experiments. Each model is trained for 10 000 steps
with a batch size of 16. The training objective is defined as the sum
of binary cross entropy and dice loss, which was first used as a loss
function for training segmentation models in [18].

During training the input images are first cropped to a region
around the starting shape of the slab so that the top of the slab is
roughly in the center of the frame. Then, the images are randomly
augmented to artificially increase the size of the training data. Two
types of data augmentation are used. The first type are affine transfor-
mations, i.e. rotation, translation, scaling or shearing. The parameters
of these operations, e.g. the degree of rotation, are sampled randomly
and the manually created masks are transformed in the same way to
preserve correctness of the segmentation. This type of augmentation is
used to improve the model robustness with respect to small variations
in the shape and positioning of the slab in the images. The second type
of data augmentation is based on plasma fractals, which are fractal
shapes that can be efficiently computed with the so called diamond-
square algorithm. Using this algorithm for data augmentation was first
proposed in [19]. For a given input image a random fractal shape is
generated and added to the image as a bright area, cf. Fig. 5 for an
example of the resulting effect. This emulates visual obstructions by
flames forming at the side of the slab, which is a common point of
failure for optical measurement of the height of the slab. The type
of augmentation applied to an input image is sampled randomly and
for both transformations the implementation in the software package
Kornia [20] is used.

2.4. Computation of regression rate

After training the neural network, the resulting model is applied
to all frames to predict a segmentation of the slab. For each column
of the segmented frame the number of pixels classified as part of the
slab is counted, i.e. the summation is in direction of the frame height.
This leads to a height measurement for each column of each frame.
A mean filter with a window size of 101 time points is applied in the
time dimension to reduce variance. The applied filter has a negligible
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Fig. 5. Example of data augmentation using plasma fractals.
Fig. 6. Example of a frame from dlr253 with manually created binary mask and output of U-net.
impact on the accuracy of the method due to the small time-steps
between each frame. Furthermore, for each column, all time-steps in
which the height of the slab increases are neglected. Indeed, since the
liquid layer is not visible in these tests (due to its small thickness and
high flame brightness), the height increase in the fuel slab could only
be due to spurious events that are not important for the sake of this
analysis. Finally, the mean along the column dimension is computed
(possibly only some subset of columns are considered, cf. Section 3.3
for more details) producing the final height measurement at each time-
point. To compute the regression rate spline smoothing is used, based
on [21], that is a piece-wise polynomial function is fitted to the height
measurements with an error tolerance of a tenth of a pixel times the
number of time-points. The derivative of the resulting approximation
can be computed analytically which yields the regression rate. The
polynomials on each sub interval in the spline approximation are cubic,
so that this approach is a direct extension of the one presented in [22]
but allows for explicit control on the level of approximation.
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3. Results

3.1. Image segmentation

The neural network described in Section 2.2 is trained to segment
the shape of the fuel slab in the frames of the high-speed videos.
To quantify the accuracy of the resulting segmentation model, the
following metrics are used:

1. Mean Intersection over Union (IoU): Area of the intersection
between model segmentation of the slab and ground truth seg-
mentation divided by the area of their union.

2. Average Error (AE): Error of the height of the slab computed
from the model output compared to the ground truth, averaged
over the length of the slab.

To train the model 75% of the labeled data is randomly selected as
training data, i.e. the weights of the neural network are optimized using
these examples, and the remaining 25% of data is used to validate the



Acta Astronautica 219 (2024) 931–940O. Assenmacher et al.
Fig. 7. Examples of frames from ulb08 and a comparison of its manual segmentation with U-Net output. White and black areas are where both U-Net and manual masks agree
on fuel and background, respectively. Red areas are marked as fuel by U-Net but they are background in manual mask, and blue areas denote the reverse. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)
Table 3
Results of four-fold cross-validation. Metrics are only computed on the validation data.
Results are reported as mean and standard deviation across the four folds.

Test id. IoU [%] AE [mm]

dlr252 98.96 ± 0.18 0.137 ± 0.025
dlr253 99.12 ± 0.26 0.132 ± 0.040
dlr254 99.12 ± 0.11 0.130 ± 0.015
ulb04 98.82 ± 0.18 0.177 ± 0.025
ulb08 96.38 ± 0.19 0.405 ± 0.033

model’s accuracy. In order to account for variance due to the random
initialization of the neural network and the random data split, four-
fold cross validation is used to evaluate the accuracy of the model.
That means that each dataset is randomly split into four folds and four
versions of the neural network are trained, each using three of the four
folds.

The results of this procedure are summarized in Table 3. The model
achieves high IoU on all four folds at roughly 99% with a slight drop to
96.4% on the test ulb08. Furthermore, the average error corresponds
to a discrepancy of less than one pixel compared to the manually
created masks with ulb08 again being a slight outlier at an average
error between two to three pixels. One reason for the larger error for
ulb08 is that the end of the fuel grain is not traced correctly, as can be
seen in Fig. 7, contributing to both lower IoU and higher AE. For most
frames the top of the fuel grain is still traced reasonably well.

3.2. Height of the fuel slab

The height of the fuel slab can be computed from the binary masks
produced by the models trained in Section 3.1. The accuracy of this
method is compared with Otsu’s thresholding [23], a widely used
approach in computer vision. In this method, a moving average with
window size 100 is first applied to every pixel along the time dimension.
Otsu’s thresholding is then used on a small crop of the image, centered
on the top of the slab, to segment the shape of the flame on top of
the slab. The position of this crop is chosen manually for each test to
avoid obstruction by flames on the side of the slab as well as reflections
or soot on the window. An opening filter is applied, which is used in
Computer Vision to remove isolated segmented pixels, and the lowest
point of the flame in the resulting segmentation is computed for each
936
Table 4
Height error [mm] of respective method in computing
the average fuel height compared to the manually
traced masks.
Test id. U-Net error Otsu’s error

dlr252 0.111 ± 0.059 0.271
dlr253 0.078 ± 0.021 0.295
dlr254 0.094 ± 0.061 0.268
ulb04 0.076 ± 0.040 0.340
ulb08 0.282 ± 0.161 0.349

column of the cropped image. Here it is assumed that the lower border
of the flame coincides with the height of the slab though in practice the
flame is not always fully attached to the slab. Finally, the height of the
slab is averaged over all columns of the cropped region. Fig. 8 shows
an example of this procedure being applied.

To compare the two methods, the average height in the cropped
region is computed using both methods and compared to the value
obtained from manual segmentations of the fuel slab. For all tests the
proposed method using a U-Net to segment the shape of the fuel slab
outperforms the one based on segmenting the shape of the flame using
Otsu’s thresholding as can be seen in Table 4, which reports the height
error of the U-Net and Otsu’s thresholding with respect to the manually
traced masks. Results for U-Net are reported as mean and standard
deviation across the 4 folds of cross-validation with 4 passes of Monte-
Carlo dropout each. The reason for using 4 passes of MC dropout and 4
folds for cross-validation is that these experiments were run on a server
with 4 GPUs so that 4 models can be trained or evaluated in parallel.
The models are only evaluated on the data used for validation during its
training. For the test ulb08 the difference in error is within one standard
deviation across the folds of cross-validation from Section 3.1. Since
ulb08 is the only pressurized test and the amount of labeled data for this
test alone is very limited, cf. Table 2, this high variance across different
data splits can be reduced by increasing the amount of labeled data for
this or similar tests. Furthermore, the pixelwise moving average applied
as a preprocessing step to Otsu’s thresholding is well suited to smooth
out the more transient flow conditions of test ulb08. Overall, the U-Net
provides a more accurate measurement of the fuel height which can
then be used to compute the regression rate.
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Fig. 8. Close crop of the top of the fuel slab (left), result of moving average (center) and segmentation after Otsu’s thresholding and opening filter (right).
Table 5
Comparison of average regression rate [mms−1] computed from U-Net segmentation
over entire flat top, front (first fourth after ramp) and the ramp of the slab. Results
are reported as mean and standard deviation across the 16 computed samples.

Test id. flat top front ramp

dlr252 0.276 ± 0.007 0.283 ± 0.026 0.384 ± 0.028
dlr253 0.232 ± 0.025 0.257 ± 0.007 0.344 ± 0.017
dlr254 0.203 ± 0.029 0.237 ± 0.035 0.250 ± 0.003
ulb04 0.201 ± 0.006 0.234 ± 0.005 0.310 ± 0.010
ulb08 0.554 ± 0.021 0.543 ± 0.023 0.517 ± 0.007

3.3. Regression rate

The regression rate of each test is computed as described in Sec-
tion 2.4. To this end, each of the four models trained via four-fold
cross-validation, cf. Section 3.1, is evaluated on the datasets four times
using Monte-Carlo dropout. The regression rate is then computed at
several spatial positions along the length of the slab. The three positions
considered are the flat top of the slab, the ramp of the slab and the
front of the slab corresponding to the first fourth of the flat top right
after the ramp. In total, this results in 16 possible trajectories for the
regression rate for each of these three positions and Table 5 shows the
mean and standard deviation across these 16 computed trajectories for
the time-averaged regression rate.

For all tests, except for ulb08, the regression rate at the front is
higher than the average value over the entire flat top of the slab. In
some cases the differences between the mean values at the front and
over the entire top may be within one standard deviation. However,
these quantities are not uncorrelated as the front is a subset of the entire
flat top. Indeed, a higher regression rate at the front of the slab clearly
contributes to a higher regression rate when considering the entire top
of the slab. Furthermore, the regression rate measured at the ramp of
the slab is, again with the exception of ulb08, notably higher than that
measured along the top of the slab.

From a combustion point of view, these numerical results match
the trend of the experimental regression rates. From theoretical ex-
pectations, as well as from observations after the combustion, it is
clear that fuels burning at atmospheric pressure regress slower than
those burning at super-critical pressures (above ca. 6.5 bar [24–27]).
Especially for low 𝐺𝑂𝑥 values, the chamber pressure is strongly influ-
encing the burning behavior and, consequently, the regression rate.
This trend is clear from the numerical results: all tests performed at
atmospheric pressure (dlr252, dlr253, dlr254, ulb04) show regression
rate values ca. 50% lower than the test performed at super-critical
pressure (ulb08) at all positions along the fuel length. Moreover, by
comparing the results of the tests performed in DLR, it is observed
that the tests dlr253 and dlr254 have a lower regression rate than test
dlr252 at all the fuel positions. This is due to the higher oxidizer mass
flow of dlr252, which, under the same operating conditions, directly
leads to higher regression rate, in accordance to the hybrid combustion
theory. Furthermore, for all the atmospheric tests, it is possible to
notice that the ramp regresses faster than the rest of the fuel slab.
The reason for this is that the flame is attached to the fuel ramp, thus
creating a hotter zone at the slab front which helps the combustion
and entrainment process. This trend is inverted in ulb08, where the
rest of the fuel slab has a higher regression rate than the ramp. This
can be explained by the fact that this pressurized test was performed
937
without any honeycomb grids to break the flow turbulent structures
before entering the combustion chamber. This caused the appearance
of longitudinal pressure waves traveling along the chamber and, thus,
affecting the combustion behavior. In particular, the flame attachment
point appears to periodically oscillate, thus causing the flame not to be
steadily attached to the ramp, generating waves structure that detach
from the burning surface, reducing the regression rate of the ramp. This
can be observed close to the leading edge of the slab in Fig. 9. For
what concerns the top surface of the fuel slab, from the segmentation
results, it is possible to observe that, for all the atmospheric tests, the
first fourth after the ramp (front) always regresses slightly faster than
the whole fuel top surface. This is related to the typical boundary
layer combustion process of hybrid rocket engines: by moving to the
back of the fuel slab, the flame located in the boundary layer moves
away from the fuel surface, thus slowing down the thermo-dynamics
processes driving and controlling the combustion. The differences are
mainly within one standard deviation, meaning that the observed effect
is relatively small, though one has to keep in mind that the error for
the two regression rate measurements will not be uncorrelated, i.e. a
higher measurement for the regression rate at the front will contribute
to a higher measurement for the entire top. Furthermore, this effect
can be observed for all atmospheric tests, which reduces the chance of
it being caused by numerical errors.

For what concerns the evolution in time, it is expected that the max-
imum regression rate is achieved towards the middle of the combustion
process, when the oxidizer mass flow reaches its target value. This is
true for tests dlr254, ulb04 (at least for the top surface) and ulb08
(with the exception of the ramp), cf. Fig. 10. The different trend in test
dlr252 and dlr253 could be due to a slightly longer ignition transient
(observed from test data and combustion videos, see Table 2), which
delayed the development of the flame along the whole fuel surface, thus
resulting in lower regression rates. Regarding test dlr252, the different
numerical results (in particular for the slab front) are likely an artifact
of the data processing. Since time-steps with an increase in the height
of the slab are discarded in a preprocessing step, if the shape of the
slab is underestimated in an early time-step this can lead to a relatively
sharp drop in height at the beginning followed by a longer flat region
in the resulting height curve. The corresponding regression rate will
follow a trend like the one for the front portion of dlr252. Additionally,
the regression rate at the front is more susceptible to this type of error
because it considers a significantly smaller region of the image. As for
the curves in ulb04 and ulb08 that reach the maximum regression rate
at the end of combustion, a possible explanation could be find in the
test sequence. In particular, the nitrogen purge at the end of combustion
causes a sudden expulsion of melt paraffin from the fuel surface (in
particular from the ramp and the front of the slab), thus resulting in a
fake increase in regression rate. This is pretty clear in test ulb04. For
test ulb08, it must be also considered that the visualization and contour
detection of the fuel slab, in particular of the ramp, was not as good
as for the other tests, cf. Table 3 and Fig. 7. Therefore, numerical error
cannot entirely be ruled out as the cause for the observed qualitative
differences in the results for ulb08.

4. Conclusion

This study shows that a convolutional neural network can be used
to detect the geometry of a solid fuel grain in the frames of a high-speed
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Fig. 9. Frame acquired from test ulb08.

Fig. 10. Comparison of regression rate over time at the entire flat top, the front and the ramp of the slab.
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video of the combustion in a hybrid slab burner. This is demonstrated
on five tests that were performed at two different test facilities under
varying test conditions, specifically with different oxidizer mass flow
rates and chamber pressures. The regression rate can be computed
from the detected geometry as a space- and time-dependent quantity,
allowing for better understanding of the combustion mechanics of solid
fuels for hybrid propulsion systems. The regression rate calculated with
the neural network increases with increasing oxidizer mass flow rate
and increasing pressure, all others factors being equal, as observed
experimentally and as predicted by hybrid combustion theory. It is ob-
served for all tests executed at atmospheric pressure that the regression
rate varies along the length of the fuel grain and is on average higher
at the first quarter of the flat top of the slab than at the rest of the
flat top and it is again higher at the forward-facing ramp. This effect
is not observed for the pressurized test and several explanations are
presented, although, due to the difficult nature of analyzing the videos
from the pressurized tests, more research is required to confidently
explain this observation. Finally, the variation of the regression rate
over time has been analyzed and the observed trends are explained
qualitatively in connection with the different phases of the experiment.

As a final result, this research demonstrates how a neural network
can be applied to the analysis of large datasets of combustion images
acquired through high-speed video techniques in hybrid rocket slab
burners, testing the capability of detecting the fuel contour not only at
different oxidizer mass flow rates and combustion chamber pressure,
but also with different test facilities. Moreover, the ability to automat-
ically analyze thousands of images and evaluate the space and time
estimation of the regression rate proves to be a valuable tool to support
the experimental research on hybrid rocket combustion.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

R. Gelain received funding from the European Union’s Horizon 2020
research and innovation program under the Marie Sklodowska-Curie
grant agreement No 860956. The research was partly carried out under
the project Antriebstechnologien und Komponenten für Trägersysteme
(ATEK) by the German Aerospace Center (DLR).

References

[1] M.A. Karabeyoglu, D. Altman, B.J. Cantwell, Combustion of liquefying hybrid
propellants: Part 1, general theory, J. Propuls. Power 18 (3) (2002) http:
//dx.doi.org/10.2514/2.5975.

[2] M.A. Karabeyoglu, B.J. Cantwell, Combustion of liquefying hybrid propellants:
Part 2, stability of liquid films, J. Propuls. Power 18 (3) (2002) http://dx.doi.
org/10.2514/2.5976.

[3] M.J. Chiaverini, N. Serin, D.K. Johnson, Y.-C. Lu, K.K. Kuo, G.A. Risha, Regres-
sion rate behavior of hybrid rocket solid fuels, J. Propuls. Power 16 (1) (2000)
125–132, http://dx.doi.org/10.2514/2.5541.

[4] G. Surina, G. Georgalis, S.S. Aphale, A. Patra, P.E. DesJardin, Measurement of
hybrid rocket solid fuel regression rate for a slab burner using deep learning, Acta
Astronaut. 190 (2022) 160–175, http://dx.doi.org/10.1016/j.actaastro.2021.09.
046.

[5] H.K. Ciezki, J. Sender, W. Clauß, A. Feinauer, A. Thumann, Combustion of solid-
fuel slabs containing boron particles in step combustor, J. Propuls. Power 19 (6)
(2003) 1180–1191, http://dx.doi.org/10.2514/2.6938.

[6] M. Kobald, A. Petrarolo, S. Schlechtriem, Combustion visualization and charac-
terization of liquefying hybrid rocket fuels, in: 51st AIAA/SAE/ASEE Jt. Propuls.
Conf., American Institute of Aeronautics and Astronautics, 2015, pp. 1–24,
http://dx.doi.org/10.2514/6.2015-4137.

[7] A. Thumann, H.K. Ciezki, Comparison of PIV and Colour-Schlieren measurements
of the combusiton process of boron particle containing soild fuel slabs in a rear-
ward facing step combustor, Int. J. Energ. Mater. Chem. Prop. 5 (2002) 742–752,
http://dx.doi.org/10.1615/IntJEnergeticMaterialsChemProp.v5.i1-6.770.
939
[8] R. Gelain, F. Angeloni, A.E. De Morais Bertoldi, P. Hendrick, Design and
commissioning of the MOUETTE hybrid rocket slab burner, in: 9th Eur.
Conf. for Aeronaut. and Space Sci., EUCASS, 2022, http://dx.doi.org/10.13009/
EUCASS2022-6055.

[9] A. Rüttgers, A. Petrarolo, M. Kobald, Clustering of paraffin-based hybrid rocket
fuels combustion data, Exp. Fluids 61 (1) (2020) 1–17, http://dx.doi.org/10.
1007/s00348-019-2837-8.

[10] A. Petrarolo, Liquid Layer Combustion Instabilities in Paraffin-Based Hybrid
Rocket Fuels (Ph.D. thesis), Universität Stuttgart, 2020.

[11] R. Gelain, A.E. De Morais Bertoldi, P. Hendrick, M. Lefebvre, Optical investiga-
tion of paraffin-based fuel combustion in a hybrid rocket slab burner, in: Aerosp.
Eur. Conf. 2023, Jt. 10th EUASS 9th CEAS Conf., 2023, http://dx.doi.org/10.
13009/EUCASS2023-041.

[12] O. Ronneberger, P. Fischer, T. Brox, U-net: Convolutional networks for biomedi-
cal image segmentation, in: Med. Image Comp. and Comp.-Assist. Interv., MICCAI
2015, 2015, pp. 234–241, http://dx.doi.org/10.1007/978-3-319-24574-4_28.

[13] D. Ulyanov, A. Vedaldi, V. Lempitsky, Instance normalization: The missing
ingredient for fast stylization, 2017, Preprint at https://arxiv.org/abs/1607.
08022.

[14] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, Dropout:
A simple way to prevent neural networks from overfitting, J. Mach. Learn. Res.
15 (56) (2014) 1929–1958.

[15] Y. Gal, Z. Ghahramani, Dropout as a Bayesian approximation: Representing
model uncertainty in deep learning, in: Proc. of the 33rd Int. Conf. on Mach.
Learn., in: Proc. of Mach. Learn. Res., vol. 48, 2016, pp. 1050–1059.

[16] I. Loshchilov, F. Hutter, Decoupled weight decay regularization, in: Int. Conf. on
Learn. Represent., ICLR, 2019.

[17] I. Loshchilov, F. Hutter, SGDR: Stochastic gradient descent with warm restarts,
in: Int. Conf. on Learn. Represent., ICLR, 2017.

[18] F. Milletarì, N. Navab, S.-A. Ahmadi, V-Net: Fully convolutional neural networks
for volumetric medical image segmentation, in: 2016 Fourth. Int. Conf. on 3D
Vision, 3DV, 2016, pp. 565–571, http://dx.doi.org/10.1109/3DV.2016.79.

[19] A. Nicolaou, V. Christlein, E. Riba, J. Shi, G. Vogeler, M. Seuret, TorMentor:
Deterministic dynamic-path, data augmentations with fractals, in: Proc. of the
IEEE/CVF Conf. on Com. Vision and Pattern Recognit. (CVPR) Workshops, 2022,
pp. 2707–2711, http://dx.doi.org/10.1109/CVPRW56347.2022.00305.

[20] E. Riba, D. Mishkin, D. Ponsa, E. Rublee, G. Bradski, Kornia: an open source
differentiable computer vision library for PyTorch, in: Winter Conf. on Appl. of
Comp. Vision, 2020, http://dx.doi.org/10.1109/WACV45572.2020.9093363.

[21] P. Dierckx, Curve and Surface Fitting with Splines, Monographs on Numerical
Analysis, Oxford University Press, 1993.

[22] K. Budzinski, S.S. Aphale, E.K. Ismael, G. Surina, P.E. DesJardin, Radiation
heat transfer in ablating boundary layer combustion theory used for hybrid
rocket motor analysis, Combust. Flame 217 (2020) 248–261, http://dx.doi.org/
10.1016/j.combustflame.2020.04.011.

[23] R. Gelain, A. Petrarolo, O. Assenmacher, A. Bertoldi, A. Rüttgers, P. Hendrick,
Estimation of regression rate from image analysis in hybrid rocket slab burners,
in: 13th Int. Symposium on Special Top. in Chem. Propuls. and Energ. Mater.,
2023.

[24] J.J. Marano, G.D. Holder, General equation for correlating the thermophysical
properties of n-paraffins, n-olefins, and other homologous series. 1. Formalism
for developing asymptotic behavior correlations, Ind. Eng. Chem. Res. 36 (5)
(1997) 1887–1894, http://dx.doi.org/10.1021/ie960511n.

[25] J.J. Marano, G.D. Holder, General equation for correlating the thermophysical
properties of n-paraffins, n-olefins, and other homologous series. 2. Asymptotic
behavior correlations for PVT properties, Ind. Eng. Chem. Res. 36 (5) (1997)
1895–1907, http://dx.doi.org/10.1021/ie960512f.

[26] J.J. Marano, G.D. Holder, A general equation for correlating the thermophysical
properties of n-paraffins, n-olefins, and other homologous series. 3. Asymptotic
behavior correlations for thermal and transport properties, Ind. Eng. Chem. Res.
36 (6) (1997) 2399–2408, http://dx.doi.org/10.1021/ie9605138.

[27] A. Karabeyoglu, B. Cantwell, J. Stevens, Evaluation of the homologous series
of normal alkanes as hybrid rocket fuels, in: 41st AIAA/ASME/SAE/ASEE Jt.
Propuls. Conf. & Exhib., 2005, http://dx.doi.org/10.2514/6.2005-3908.

Glossary

Artificial Neural Network: Sequence of simple mathematical operations that can ap-
proximate complicated non-linear functions, commonly abbreviated as Neural
Network

Convolutional Layer: Possible operation in a neural network applying a linear kernel as
a sliding window

Dropout Layer: Possible operation in a neural network, where some of the values of the
output of the previous layer are set to zero with a given probability

Training: Optimizing the free parameters of an artificial neural network for a given task
Inference: Using an artificial neural network that was optimized for a given task to

make a prediction for new data

Layer: One step in an artificial neural network
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Image Segmentation: Task of separating an image into discrete regions, e.g. to separate
foreground from background

Data Augmentation: Processing step during training in which input data is randomly
transformed to artificially increase the number of training examples

Training Data: Set of data points that are used as examples during the training of an
artificial neural network

Loss Function: Objective function to be minimized during training with respect to some
set of training data

Weights: Free parameters of an artificial neural network that are adjusted automatically
during training
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