Tings, Björn (2022) Data Science and Big Data. UBRA: “Data Train” – Curriculum “Starter Track”, 2022-01-26, Bremen, Germany & online.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://www.bremen-research.de/data-train/courses#Starter-Track
Kurzfassung
Parallel to the digital transformation, a novel scientific discipline has been developed – data science. Data science allows new approaches for interdisciplinary (big) data analyses through complex algorithms and artificial intelligence (machine learning, deep learning etc.). Such approaches extract information from the data sets beyond the current scientific knowledge. Therefore, data science is of interest for nearly all research as well as industry/economy fields and often termed as a novel key discipline (e.g. Society of Informatics e.V., 2019). This course provides a basic overview about data science applications. To produce reliable data science results a profound knowledge about the data analyses methods, data management techniques and innovative technologies is required. Additionally, to assess these results and approaches an awareness of their ethical, legal, and social implications is demanded (all topics are addressed in the following courses and operator tracks).
elib-URL des Eintrags: | https://elib.dlr.de/203696/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vorlesung) | ||||||||
Zusätzliche Informationen: | UBRA: U Bremen Research Alliance, https://www.bremen-research.de/research-alliance // Data Train: Training in Research Data Management and Data Science, https://www.uni-bremen.de/research-alliance/forschungsdaten/data-train - open online lectures | ||||||||
Titel: | Data Science and Big Data | ||||||||
Autoren: |
| ||||||||
Datum: | 26 Januar 2022 | ||||||||
Referierte Publikation: | Nein | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Overview, Terminology, Data Science, Machine Learning, Big Data, AI, Ethics, Applications | ||||||||
Veranstaltungstitel: | UBRA: “Data Train” – Curriculum “Starter Track” | ||||||||
Veranstaltungsort: | Bremen, Germany & online | ||||||||
Veranstaltungsart: | Andere | ||||||||
Veranstaltungsdatum: | 26 Januar 2022 | ||||||||
Veranstalter : | University of Bremen Research Alliance (UBRA) | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Raumfahrt | ||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||
Hinterlegt am: | 26 Apr 2024 12:12 | ||||||||
Letzte Änderung: | 29 Apr 2024 10:08 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags