elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Soil organic carbon mapping utilizing convolutional neural networks and Earth observation data, a case study in Bavaria state Germany

Tziolas, Nikolaos und Tsakiridis, Nikolaos und Heiden, Uta und van Wesemael, Bas (2024) Soil organic carbon mapping utilizing convolutional neural networks and Earth observation data, a case study in Bavaria state Germany. Geoderma, 444, Seite 116867. Elsevier. doi: 10.1016/j.geoderma.2024.116867. ISSN 0016-7061.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
10MB

Offizielle URL: https://dx.doi.org/10.1016/j.geoderma.2024.116867

Kurzfassung

The Copernicus Sentinel-2 multispectral imagery data may be aggregated to extract large-scale, bare soil, reflectance composites, which enable soil mapping applications. In this paper, this approach was tested in the German federal state of Bavaria, to provide estimations for soil organic carbon (SOC). Different temporal ranges were considered for the generation of the composites, including multi-annual and seasonal ranges. A novel multi-channel convolutional neural network (CNN) is proposed. By leveraging the advantages of deep learning techniques, it utilizes complementary information from different spectral pre-treatment techniques. The SOC predictions indicated little dissimilarity amongst the different composites, with the best performance attained for the six-year composite containing only spring months (RMSE = 12.03 g C · kg−1, R2 = 0.64, RPIQ = 0.89). It has been demonstrated that these outcomes outperform other well-known machine learning techniques. An ablation analysis was accordingly performed to evaluate the interplay of the CNN’s different components to disentangle the advantages of each aspect of the proposed framework. Finally, a DUal inPut deep LearnIng architecture, named DUPLICITE, is proposed, which concatenates deep spectral features derived from the CNN mentioned earlier, as well as topographical and environmental covariates through an artificial neural network (ANN) to exploit their complementarity. The proposed approach was demonstrated to provide an improvement in the overall prediction performance (RMSE = 11.60 gC · kg−1, R2 = 0.67, RPIQ = 0.92).

elib-URL des Eintrags:https://elib.dlr.de/203607/
Dokumentart:Zeitschriftenbeitrag
Titel:Soil organic carbon mapping utilizing convolutional neural networks and Earth observation data, a case study in Bavaria state Germany
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Tziolas, NikolaosNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-1502-3219NICHT SPEZIFIZIERT
Tsakiridis, NikolaosNICHT SPEZIFIZIERThttps://orcid.org/0000-0002-1904-9029NICHT SPEZIFIZIERT
Heiden, Utauta.heiden (at) dlr.dehttps://orcid.org/0000-0002-3865-1912NICHT SPEZIFIZIERT
van Wesemael, BasNICHT SPEZIFIZIERThttps://orcid.org/0000-0003-4007-0241NICHT SPEZIFIZIERT
Datum:28 März 2024
Erschienen in:Geoderma
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:444
DOI:10.1016/j.geoderma.2024.116867
Seitenbereich:Seite 116867
Verlag:Elsevier
ISSN:0016-7061
Status:veröffentlicht
Stichwörter:Deep learning Common agricultural policy Explainable artificial intelligence Digital soil mapping
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Optische Fernerkundung
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > Photogrammetrie und Bildanalyse
Hinterlegt von: Heiden, Dr.rer.nat. Uta
Hinterlegt am:12 Apr 2024 15:10
Letzte Änderung:11 Nov 2024 14:10

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.