Herteux, Joschka und Räth, Christoph und Baha, Amine und Martini, Giulia und Piovani, Duccio (2024) Forecasting Food Security with Reservoir Computing. In: Verhandlungen der DPG. DPG Frühjahrestagung, 2024-03-18 - 2024-03-22, Berlin, Deutschland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Early warning systems are an essential tool for effective humanitarian action. Advance warnings on impending disasters facilitate timely and targeted response which help save lives, livelihoods, and scarce financial resources. We present a quantitative methodology based on Reservoir Computing (RC) to forecast levels of food consumption for 60 consecutive days, at the sub-national level, in four countries: Mali, Nigeria, Syria, and Yemen. The methodology is built on publicly available data from the World Food Programme’s integrated global hunger monitoring system (https://hungermap.wfp.org/). We compare the performance of the RC model to various algorithms including ARIMA, XGBoost, LSTMs and CNNs spanning from classical statistical to deep learning approaches. Our findings highlight Reservoir Computing as a particularly well-suited model for this task given both its notable resistance to over-fitting on limited data samples and its efficient training capabilities. This work constitutes a successful application of RC on high-dimensional, heterogenous, real data and has been submitted to Nature Communications.
elib-URL des Eintrags: | https://elib.dlr.de/203422/ | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||||||||||||||||||
Titel: | Forecasting Food Security with Reservoir Computing | ||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||
Datum: | 2024 | ||||||||||||||||||||||||
Erschienen in: | Verhandlungen der DPG | ||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||
Open Access: | Nein | ||||||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||
Stichwörter: | time series analysis, AI, food security, world food programme (WFP), prediction, sustainable development goals | ||||||||||||||||||||||||
Veranstaltungstitel: | DPG Frühjahrestagung | ||||||||||||||||||||||||
Veranstaltungsort: | Berlin, Deutschland | ||||||||||||||||||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||||||||||||||||||
Veranstaltungsbeginn: | 18 März 2024 | ||||||||||||||||||||||||
Veranstaltungsende: | 22 März 2024 | ||||||||||||||||||||||||
Veranstalter : | Deutsche Physikalische Gesellschaft | ||||||||||||||||||||||||
HGF - Forschungsbereich: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programm: | keine Zuordnung | ||||||||||||||||||||||||
HGF - Programmthema: | keine Zuordnung | ||||||||||||||||||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||||||||||||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | D - Kurzstudien [KIZ] | ||||||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit | ||||||||||||||||||||||||
Hinterlegt von: | Räth, Christoph | ||||||||||||||||||||||||
Hinterlegt am: | 26 Mär 2024 12:51 | ||||||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags