Nakano, Tamon und Baur, Christoph und Räth, Christoph (2024) High Dimensional Hybrid Reservoir Computing. In: Verhandlungen der DPG. DPG Frühjahrestagung, 2024-03-18 - 2024-03-22, Berlin, Deutschland.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Kurzfassung
Reservoir Computing (RC) is getting popularity as an alternative solution for complex dynamical systems, where physically derived models reach their limitation. RC is by default fully data-driven method and is expected to learn the underlying system in the dataset. However RC can't do so for a lack of data quantity, for example. The hybrid approach is now recognized as a powerful option for it. The idea is to combine a knowledge-based model as a support (e.g. an imperfect governing equation) to the fully data-driven method. This combination can be done at the input, output layer of RC or both of them (respectively called, input-, output-, full-hybrid). Some studies have been already done, for example, input- and full-hybrid by Pathak et al.(2018), output-hybrid by Doan et al.(2019). Duncan et al.(2023) compared the performance of the three approaches and showed the superiority of output-hybrid compared to the others. The prior studies above have developed the hybrid approach in lower dimensional problems (e.g. three dimension). In this work, we will extend the hybrid approach to higher dimensional systems. This will allow to treat highly nonlinear and time evolutionary systems with system knowledge, such as fluid dynamics simulations and time evolutionary phenomena captured in two-dimensional images.
elib-URL des Eintrags: | https://elib.dlr.de/203421/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Vortrag) | ||||||||
Titel: | High Dimensional Hybrid Reservoir Computing | ||||||||
Autoren: |
*DLR corresponding author | ||||||||
Datum: | 2024 | ||||||||
Erschienen in: | Verhandlungen der DPG | ||||||||
Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Stichwörter: | spatiotemporal chaos, AI, complex systems, reservoir computing, prediction | ||||||||
Veranstaltungstitel: | DPG Frühjahrestagung | ||||||||
Veranstaltungsort: | Berlin, Deutschland | ||||||||
Veranstaltungsart: | internationale Konferenz | ||||||||
Veranstaltungsbeginn: | 18 März 2024 | ||||||||
Veranstaltungsende: | 22 März 2024 | ||||||||
Veranstalter : | Deutsche Physikalische Gesellschaft | ||||||||
DLR - Schwerpunkt: | Digitalisierung | ||||||||
DLR - Forschungsgebiet: | D KIZ - Künstliche Intelligenz | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für KI-Sicherheit |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags