elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Periodically activated physics-informed neural networks for assimilation tasks for three-dimensional Rayleigh–Bénard convection

Mommert, Michael und Barta, Robin und Bauer, Christian und Volk, Marie-Christine und Wagner, Claus (2024) Periodically activated physics-informed neural networks for assimilation tasks for three-dimensional Rayleigh–Bénard convection. Computers & Fluids, 283 (106419), Seiten 1-19. Elsevier. doi: 10.1016/j.compfluid.2024.106419. ISSN 0045-7930.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
3MB

Offizielle URL: https://www.sciencedirect.com/science/article/pii/S0045793024002500

Kurzfassung

We apply physics-informed neural networks to three-dimensional Rayleigh-Benard convection in a cubic cell with a Rayleigh number of Ra=10^6 and a Prandtl number of Pr=0.7 to assimilate the velocity vector field from given temperature fields and vice versa. With the respective ground truth data provided by a direct numerical simulation, we are able to evaluate the performance of the different activation functions applied (sine, hyperbolic tangent and exponential linear unit) and different numbers of neuron (32, 64, 128) for each of the five hidden layers of the multi-layer perceptron. The main result is that the use of a periodic activation function (sine) typically benefits the assimilation performance in terms of the analyzed metrics, correlation with the ground truth and mean average error. The higher quality of results from sine-activated physics-informed neural networks is also manifested in the probability density function and power spectra of the inferred velocity or temperature fields. Regarding the two assimilation directions, the assimilation of temperature fields based on velocities appeared to be more challenging in the sense that it exhibited a sharper limit on the number of neurons below which viable assimilation results could not be achieved.

elib-URL des Eintrags:https://elib.dlr.de/203138/
Dokumentart:Zeitschriftenbeitrag
Titel:Periodically activated physics-informed neural networks for assimilation tasks for three-dimensional Rayleigh–Bénard convection
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Mommert, MichaelMichael.Mommert (at) dlr.dehttps://orcid.org/0000-0002-7817-3388171093710
Barta, Robinrobin.barta (at) dlr.dehttps://orcid.org/0000-0001-8882-5864171093711
Bauer, ChristianChristian.Bauer (at) dlr.dehttps://orcid.org/0000-0003-1838-6194NICHT SPEZIFIZIERT
Volk, Marie-ChristineMarie-Christine.Volk (at) dlr.dehttps://orcid.org/0009-0003-8963-2724171093712
Wagner, ClausClaus.Wagner (at) dlr.dehttps://orcid.org/0000-0003-2273-0568NICHT SPEZIFIZIERT
Datum:30 August 2024
Erschienen in:Computers & Fluids
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:283
DOI:10.1016/j.compfluid.2024.106419
Seitenbereich:Seiten 1-19
Verlag:Elsevier
ISSN:0045-7930
Status:veröffentlicht
Stichwörter:Rayleigh-Bénard convection, physics-informed neural networks, assimilation, machine learning, activation functions
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Verkehr
HGF - Programmthema:Schienenverkehr
DLR - Schwerpunkt:Verkehr
DLR - Forschungsgebiet:V SC Schienenverkehr
DLR - Teilgebiet (Projekt, Vorhaben):V - RoSto - Rolling Stock
Standort: Göttingen
Institute & Einrichtungen:Institut für Aerodynamik und Strömungstechnik > Bodengebundene Fahrzeuge
Hinterlegt von: Mommert, Michael
Hinterlegt am:06 Nov 2024 11:51
Letzte Änderung:18 Nov 2024 12:22

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.