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A B S T R A C T

We apply physics-informed neural networks to three-dimensional Rayleigh–Bénard convection in a cubic cell
with a Rayleigh number of Ra = 106 and a Prandtl number of Pr = 0.7 to assimilate the velocity vector field
from given temperature fields and vice versa. With the respective ground truth data provided by a direct
numerical simulation, we are able to evaluate the performance of the different activation functions applied
(sine, hyperbolic tangent and exponential linear unit) and different numbers of neurons (32, 64, 128, 256)
for each of the five hidden layers of the multi-layer perceptron. The main result is that the use of a periodic
activation function (sine) typically benefits the assimilation performance in terms of the analyzed metrics,
correlation with the ground truth and mean average error. The higher quality of results from sine-activated
physics-informed neural networks is also manifested in the probability density function and power spectra
of the inferred velocity or temperature fields. Regarding the two assimilation directions, the assimilation of
temperature fields based on velocities appears to be more challenging in the sense that it exhibits a sharper
limit on the number of neurons below which viable assimilation results cannot be achieved.
1. Introduction

Turbulent thermal convection governs a wide variety of flows con-
sidered for solving engineering tasks (see e.g. Schmeling and Volkmann
[1]) and environmental issues (see e.g. Völker et al. [2]). Understanding
and controlling these flows requires knowledge of the heat fluxes they
induce. The acquisition of heat fluxes requires both velocity and tem-
perature data. In terms of measurements, the simultaneous recording of
both fields has been shown to be feasible in a laboratory environment
(for recent examples see Mommert et al. [3], Käufer and Cierpka [4]).
However, even on this scale, these measurements require a high level
of experimental effort.

In this context, the approach of assimilating temperature fields
from volumetric velocity measurements is an attractive option to avoid
the significant increase in complexity that an additional temperature
measurement represents. More specifically, the assimilation based on
physics-informed neural networks (PINNs) is controlled by the under-
lying partial differential equations (PDEs) as part of the loss function
for a network, and thus does not require additional data to train the
models a priori. This approach also promises to be extensible to flows
of greater complexity and scale beyond the laboratory by exploiting the
potential of modern, highly parallelized computing architectures (Vin-
uesa et al. [5]). Therefore, we pursue the development of a PINN-based
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assimilation method that relies only on field data typically obtained
from measurements (either just temperatures or just velocities).

The following are examples of applications of PINNs that are rele-
vant to this application: One of the possible applications of PINNs is
similar to that of a numerical solver, where the only data provided are
the initial and boundary conditions. Such implementations are usually
confined to two dimensions, such as the vortex shedding behind a
circular object underlying the Navier–Stokes equations, as presented in
the original PINN paper by Raissi et al. [6]. Other examples are neural
solvers for the Poisson equation (Markidis [7]) or the compressible
Euler equations (Wassing et al. [8]). In summary, these examples show
that neural networks are able to approximate the solutions of the PDEs
governing the respective flows by minimizing the losses representing
the residuals of the PDEs.

Yet, a major advantage of PINNs is their ability to incorporate any
kind of additional data that helps to find the desired solution more
effectively, as is the case for the assimilation tasks at hand (Cai et al.
[9]). An example of this is the use of a PINN to regularize the results
of two-dimensional three-component particle image velocimetry data,
shown by Hasanuzzaman et al. [10]. Furthermore, Di Leoni et al. [11]
used velocity data from three-dimensional Lagrangian measurements
to assimilate the pressure. The reconstruction of velocity and pressure
https://doi.org/10.1016/j.compfluid.2024.106419
Received 6 March 2024; Received in revised form 6 August 2024; Accepted 27 Aug
vailable online 30 August 2024 
045-7930/© 2024 The Author(s). Published by Elsevier Ltd. This is an open access a
ust 2024

rticle under the CC BY license ( http://creativecommons.org/licenses/by/4.0/ ). 

https://www.elsevier.com/locate/compfluid
https://www.elsevier.com/locate/compfluid
mailto:michael.mommert@dlr.de
https://doi.org/10.1016/j.compfluid.2024.106419
https://doi.org/10.1016/j.compfluid.2024.106419
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compfluid.2024.106419&domain=pdf
http://creativecommons.org/licenses/by/4.0/


M. Mommert et al. Computers and Fluids 283 (2024) 106419 
fields was also achieved by Eusebi et al. [12], showing the reconstruc-
tion of the flow of a tropical cyclone from spatially sparse data. Another
example is provided by Soto et al. [13], where the PINN regularizes the
velocity fields of a preceding reconstruction of small time scales and
provides additional pressure data. This set of examples demonstrates
the basic ability of the PINN method to handle noisy or sparse data,
which is required for assimilation tasks.

The case of Rayleigh–Bénard convection considered here is char-
acterized by the transport of the scalar temperature. How data of a
transported scalar can be leveraged to assimilate the velocity field
was shown by Raissi et al. [14] for the three-dimensional flow in
an intracranial aneurysm. Even more relevant for Rayleigh–Bénard
convection, the temperature field was used by Cai et al. [15] to re-
construct three-dimensional velocity and pressure fields of the region
above an espresso cup in which a tomographic background-oriented
Schlieren measurement was applied. The same type of assimilation to
provide temperature data for the training was done by Lucor et al. [16].
However, they still provided both velocities and temperatures as initial
conditions, which would not be feasible in the context of avoiding the
respective measurement effort. Another example of the assimilation of
velocities is the work of Di Leoni et al. [17], who investigated the
effect of sparsity on the provided temperature data in two-dimensional
Rayleigh–Bénard convection. Cai et al. [18] also used local temperature
measurements in combination with boundary conditions to recover
the flow and thermal boundary conditions for either forced or mixed
convective flows past cylinders.

The above-mentioned publications show that PINNs are usually
used to assimilate flows based on temperature data, while modern
measurement techniques are capable of providing highly resolved ve-
locity data of thermally-driven convective flows. Therefore, we use the
assimilation of velocity fields as a link to previous studies before inves-
tigating the temperature assimilation pursued, which further allows a
comparison of both assimilation directions.

Also, a large part of the studies mentioned above deal with a limited
amount of turbulence-induced complexity, as the variety of structure
sizes also poses high requirements on PINNs to be able to reconstruct
them. This issue is, for example, addressed by implementing periodic
activation functions, typically sine (Sitzmann et al. [19]). Because of
their relation to Fourier features (Tancik et al. [20]) and thus to the
idea of decomposing the flow fields into Fourier modes, they seem
predestined to allow neural networks to efficiently map complex flows.
In the context of turbulent flows, periodically activated PINNs have
been used by Angriman et al. [21] to reconstruct turbulence from
underresolved flow fields by imposing information about higher order
statistical moments.

To evaluate the performance of the PINNs, we base our investigation
on ground truth data generated in a direct numerical simulation de-
scribed in Section 2. Regarding turbulent Rayleigh–Bénard convection,
the assimilation of velocity or temperature data becomes increasingly
complex with increasing turbulence intensity, indicated by the dimen-
sionless Rayleigh (Ra) and Prandtl (Pr) numbers. Therefore, we chose
to study a case of Rayleigh–Bénard convection in a cubic cell at Ra =
106 and Pr = 0.7 with moderate turbulence. Since we investigate the
influence of different activation functions on the ability of a neural
network to map the complexity of turbulent flows, we also vary the
number of neurons in each hidden layer of the PINN. Further details
of the PINN and its training parameters are described in Section 3.
The results of the PINNs with the different parameters and for both
assimilation directions are then presented and discussed in Section 4.

2. Generation of ground truth data

The ground truth data are generated in a direct numerical simu-
lation (DNS) of a turbulent Rayleigh–Bénard convection at Pr = 0.7
and Ra = 106 in a cubic domain, solving the transport equations for
2 
Fig. 1. Cubic Rayleigh–Bénard convection cell with the height 𝐻 and the volume 𝐻3.
All walls are no-slip boundaries; top and bottom walls are iso-thermal and side walls
are adiabatic.

mass, momentum, and temperature for an incompressible fluid and the
Boussinesq approximation,
𝜕𝐮
𝜕𝑡

+ 𝐮 ⋅ ∇𝐮 = −∇𝑝 +
√

Pr∕Ra∇2𝐮 + 𝑇 𝐞𝑧, (1)
𝜕𝑇
𝜕𝑡

+ 𝐮 ⋅ ∇𝑇 =
√

1∕(PrRa)∇2𝑇 , (2)

∇ ⋅ 𝐮 = 0, (3)

where 𝐮 = (𝑢𝑥, 𝑢𝑦, 𝑢𝑧) is the velocity vector, 𝑝 is the pressure, 𝑇 is
the temperature, and 𝐞𝑧 is the unit vector with respect to the vertical
direction. The flow geometry, consisting of a cubic domain with a
heated bottom plate (𝑇 = 𝑇𝑤), a cooled top plate (𝑇 = 𝑇𝑐), and
adiabatic side walls, is displayed in Fig. 1.

Velocities are non-dimensionalized with the free-fall velocity �̂�ref =
(�̂��̂�𝛥�̂� �̂�3)1∕2, spatial coordinates with the cell height �̂�ref = �̂� , the time
coordinate with the corresponding reference time 𝑡ref = �̂�ref∕�̂�ref , and
the pressure with the reference pressure �̂�ref = �̂��̂�2ref with �̂� being the
fluid density, �̂� the thermal diffusivity, and �̂� the gravitational accel-
eration. The temperature is non-dimensionalized by 𝑇 = (�̂� − �̂�0)∕𝛥�̂�
with 𝛥�̂� = �̂�𝑤 − �̂�𝑐 and �̂�0 = (�̂�𝑤 − �̂�𝑐 )∕2. No-slip and impermeability
boundary conditions are applied to all walls. In addition, the top and
bottom plates are assumed to be iso-thermal, whereas the side walls
are modeled as adiabatic. After non-dimensionalization, the Eqs. (1)–
(3) are discretized spatially and temporally with a fourth-order accurate
finite volume scheme and a second-order accurate Euler–leapfrog time
integration scheme, respectively. According to Wagner et al. [22], the
temporal discretization of Eq. (1) for a leapfrog time step yields
1
2𝛥𝑡

(𝐮𝑛+1 − 𝐮𝑛−1) + 𝐮𝑛 ⋅ ∇𝐮𝑛 = −∇𝑝𝑛 +
√

Pr∕Ra∇2𝐮𝑛−1 + 𝑇 𝑛𝐞𝑧, (4)

where 𝑛 is the number of the time step, 𝛥𝑡 is the temporal increment be-
tween two time steps, and 𝛿𝑗𝑖 is the Kronecker delta. To integrate Eq. (4)
in time, a fractional step algorithm as the one introduced by Chorin
[23,24] is applied. In a first step, an auxiliary velocity vector field 𝐮∗
is estimated from Eq. (4) neglecting the pressure term,
1
2𝛥𝑡

(𝐮∗ − 𝐮𝑛−1) + 𝐮𝑛 ⋅ ∇𝐮𝑛 =
√

Pr∕Ra∇2𝐮𝑛−1 + 𝑇 𝑛𝐞𝑧. (5)

In the second step, the pressure Poisson equation is solved for the
auxiliary field as follows:

∇2𝜙𝑛 = ∇ ⋅ 𝐮∗, (6)

with 𝜙𝑛 = 2𝛥𝑡𝑝𝑛 and the boundary condition (𝐧 ⋅ ∇𝜙𝑛)|𝜕𝛾 = 0. Due
to the inhomogeneity of the flow problem with respect to all three
directions, the Poisson solver utilizes a separation of variables method
as described by Shishkina et al. [25]. Finally, the velocity at time step
𝑛 + 1 is corrected via

𝐮𝑛+1 = 𝐮∗ − ∇𝜙𝑛. (7)
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Table 1
Rayleigh–Bénard convection simulation case. Ra is the Rayleigh, Pr the Prandtl number.
𝑁𝑥, 𝑁𝑦 and 𝑁𝑧 are the number of grid points in 𝑥, 𝑦, and 𝑧 direction, respectively. 𝛥𝑧
is the grid spacing. 𝑁𝛿𝜃 is the number of grid points in the thermal, 𝑁𝛿𝑢 in the kinetic
boundary layer. The Nusselt number (see Eq. (14)) is computed a posteriori.

Ra Pr 𝑁𝑥 ×𝑁𝑦 ×𝑁𝑧 𝛥𝑧∕𝐻 𝑁𝛿𝜃 𝑁𝛿𝑢 Nu

106 0.7 64 × 64 × 64 0.0156 3 3 8.3

Regarding the spatial discretization, the numerical grid aims to fully
resolve the smallest velocity and temperature scales, which are the
Kolmogorov and Batchelor length scales

𝜂𝐾 =
(

𝜈3

𝜀𝑢

)

and (8)

𝜂𝐵 =
(

𝜈𝜅2

𝜀𝑢

)

= 𝜂𝐾Pr−1∕2, (9)

espectively, with 𝜀𝑢 = 𝜈⟨𝜕𝑢𝑖∕𝜕𝑥𝑗⟩ the kinetic dissipation rate. Angle
rackets indicate statistical averaging. For the present case of Pr < 1,

the Kolmogorov length scale is smaller than the Batchelor length scale,
and thus, more restrictive with respect to the grid resolution. According
to Shishkina et al. [26], the minimum grid spacing in the bulk flow
region can be estimated via the following approximation of the global
Kolmogorov scale

ℎ𝑏𝑢𝑙𝑘∕𝐻 ≤ Pr1∕2

((Nu − 1)Ra)1∕4
, for Pr < 1, (10)

hereas the minimum grid spacing in the thermal and viscous bound-
ry layers is estimated based on the Prandtl–Blasius boundary layer
heory,
𝐵𝐿∕𝐻 ≤ 2−3∕2𝑎−1Nu−3∕2Pr0.5355−0.033 log Pr , for 3 × 10−4 ≤ Pr ≤ 1, (11)

ith 𝑎 ≈ 0.922 [27]. Moreover, Shishkina et al. [26] recommend
inimum numbers of nodes in the thermal and kinetic boundary layer

f
𝑚𝑖𝑛
𝛿𝜃

=
√

2𝑎Nu1∕2Pr−0.5355+0.033 log Pr , for 3 × 10−4 ≤ Pr ≤ 1, (12)
𝑚𝑖𝑛
𝛿𝑢

=
√

2𝑎Nu1∕2Pr−0.1785+0.011 log Pr , for 3 × 10−4 ≤ Pr ≤ 1. (13)

ith the Nusselt number derived a priori from the Grossmann–Lohse
heory [28–31], a minimum grid spacing of 0.04 in the bulk flow region
nd 0.02 in the boundary layer is obtained. Additionally, the minimum
umber of nodes in the boundary layers — Eqs. (12) and (13) — is
stimated to 𝑁𝑚𝑖𝑛

𝛿𝜃
= 3 and 𝑁𝑚𝑖𝑛

𝛿𝑢
= 3 for the thermal and kinetic

oundary layer, respectively. Overall, an equidistant grid spacing of
𝑧∕𝐻 = 0.0156 in all three dimensions is applied (see Table 1).

After an initial transient, when the average Nusselt number com-
uted from the cooled and the heated plate,

u = −1
2

(

⟨ d𝑇
d𝑧

⟩

𝑥𝑦𝑡
(𝑧 = 0) +

⟨ d𝑇
d𝑧

⟩

𝑥𝑦𝑡
(𝑧 = 𝐻)

)

, (14)

has reached a statistically stationary state, instantaneous flow field
realizations in the form of velocity, pressure, and temperature fields
are written out every 0.05 dimensionless time units. The velocity fields
are then interpolated from the staggered grid used in the DNS solver to
a collocated grid with the pressure and temperature fields. Hereafter,
these fields (denoted with ⋅̃) serve as the ground truth and input data
for the PINN.

3. PINN and training configuration

The following subsections are dedicated to the PINN approach
and its application to assimilation. It covers the construction of the
neural network 3.1, the data input 3.2 and additional details needed

to configure the training process 3.3. r

3 
3.1. Architecture

To assimilate flow fields, such as velocity, temperature, or pressure
fields, which are missing since they are not captured by a measurement,
a multi-layer perceptron (MLP) is used. It is shown in Fig. 2 and serves
as a universal function approximator for the 𝑢, 𝑣,𝑤, 𝑇 , 𝑝 properties of
the flow. The MLP consists of five fully connected hidden layers, each
with a constant width of 𝑁N neurons. This block of hidden layers is
connected with linear scaling layers to the actual input and output to
improve the condition of the network.

Each fully connected layer 𝐠(𝐿+1) is thereby configured as a linear
ombination, multiplying the weight matrix 𝐖 with the output 𝐠 of the

previous layer 𝐿 and adding the bias vector 𝐛, which is then activated
by a non-linear function 𝜎:

𝐠(𝐿+1) = 𝜎(𝐖(𝐿+1) ⋅ 𝐠(𝐿) + 𝐛(𝐿+1)). (15)

Overall this network can be viewed as a function

𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝑇 , 𝑝] = 𝐟 ([𝑡, 𝑥, 𝑦, 𝑧],𝜽) (16)

hich is approximating solutions to the partial differential equations
escribing the investigated flow. Thereby, 𝜽 denotes the complete set
f the trainable parameters of the network, i.e. the weights and biases
f the layers.

Regarding the activation function, the hidden layer neurons are
niformly activated with either a sine as a periodic function, a hyper-
olic tangent, or an exponential linear unit (ELU) [32] for comparison.
owever, the hyperbolic tangent function is used as the activation for

he scaled output layer in any case due to its asymptotic behavior for
arge absolute inputs.

caling layers. Both scaling layers aim to condition the neural network
n a way that its layer outputs are all scaled between −1 and 1.
herefore, the already dimensionless input coordinates are scaled by

scaled =
2

𝜁max − 𝜁min
𝜁 +

𝜁min + 𝜁max
𝜁min − 𝜁max

, (17)

with 𝜁 ∈ {𝑡, 𝑥, 𝑦, 𝑧} and 𝜁min, 𝜁max being the boundaries of the examined
domain. This is especially necessary for the time coordinate, since we
are examining relatively short intervals in the context of large DNS time
coordinates.1

For the output, only the temperatures are scaled with

𝑇 = 𝑇scaled∕2, (18)

as −0.5 and 0.5 are the dimensionless temperatures of the bottom and
top surface, which limit the range for the fluid. Since the velocity and
pressure values do not have such clear limits, but are well distributed
within [−1, 1], no further scaling is applied to them.

3.2. Sampling

The sampling for the training process is conducted according to
the DNS grid. To limit the computational effort, only 11 snapshots
covering a time of 0.5 𝑡f f are processed. Together with the full DNS grid
resolution of 643 used for the spatial sampling, this yields a number of
approximately 2.9 × 106 data points. Thus, for each epoch, randomly
composed mini-batches of size 𝑁b = 4 × 103 are provided for the
individual training steps to benefit from the advantages of large batch
sizes [33].

1 The scaling can also be performed as a data preprocessing step. Here,
e opted to implement it as part of the PINN architecture for compatibility

easons.



M. Mommert et al.

t
[
w
𝜁
t
i

B
d
a
s
f
o
a

a
t
b
t
m
s
t
i

i



o
t
c

Computers and Fluids 283 (2024) 106419 
Fig. 2. Architecture of the MLP used as physics-informed neural network.
t



Jittery collocation. The collocation points of each training step, which
are used to evaluate the PDEs, are based on the provided data points,
but modified by some jitter 𝛿c. That means, in every training step,
he dislocation 𝛿c obtained from a random uniform distribution within
−𝛥𝜁∕2, 𝛥𝜁∕2] is added to the coordinates of the collocation points,
here 𝛥𝜁 is the distance between two grid points for the coordinate
. This ensures that the PDEs are evaluated at a variety of positions be-
ween the original grid points over the course of the training, which is
ntended to prevent the formation of spurious subgrid-scale structures.

oundary treatment. In this assimilation approach, the boundary con-
itions are already partially covered by the provided data, which is
lso sampled at the boundaries. To further support the assimilation, a
eparate boundary loss that covers the Dirichlet boundaries of the target
ields has been implemented, i.e. the six walls for velocity assimilation
r the constant temperature top and bottom plates for temperature
ssimilation.

These boundaries are sampled with a separate set of points. To
ccount for the reduced density of data and collocation points used in
he mini-batch of a training step, each boundary surface is represented
y 8 × 8 spatial grid points for the same time instances provided by
he data snapshots. Their spatio-temporal coordinates are then also
odified by a jitter, as described above, to provide a dense boundary

ampling by considering a large number of training steps. In this way,
he network is provided with �̃� = 0 on all six faces of the cubic domain
n the case of velocity assimilation and �̃� = ±0.5 for the bottom and

top face in the case of temperature assimilation.

3.3. Optimization

To perform the training, the PINN is implemented in the framework
of Tensorflow [34] and Keras [35]. More specifically, the Adam opti-
mizer [36] is used in the default configuration, except for a constant
learning rate of 10−4 for a fixed number of 5000 epochs. The overall
loss function  used to train the network is a sum of several loss
contributions described in more detail below. First, the data loss data
is a mean-squared error loss of the provided data. That means, it is
defined as data = 𝑇 in the case of velocity assimilation and data = 𝐮
n the case of temperature assimilation:

𝑇 = 1
𝑁b

𝑁b
∑

𝑗=1
|𝑇𝑗 − �̃�𝑗 |

2 (19)

𝐮 = 1
3𝑁b

𝑁b
∑

𝑗=1
‖(𝐮𝑗 − �̃�𝑗 )2‖1 (20)

Regarding the physics losses, the contributions of the residuals
f the Navier–Stokes equations (NSe), the convection–diffusion equa-
ion of the temperature (CDe) and the continuity equation (Coe) are
alculated as shown below.

NSe = 1
3𝑁

𝑁b
∑

‖

‖

‖

‖

(

𝜕𝐮𝑗
𝜕𝑡

+ (𝐮𝑗 ⋅ ∇)𝐮𝑗 + ∇𝑝𝑗 −
√

Pr
Ra

(∇ ⋅ ∇)𝐮𝑗 − 𝐞𝑧𝑇𝑗

)2
‖

‖

‖

‖

(21)

b 𝑗=1 ‖

‖

‖

‖1

4 
CDe = 1
𝑁b

𝑁b
∑

𝑗=1

|

|

|

|

|

𝜕𝑇𝑗
𝜕𝑡

+ (𝐮𝑗 ⋅ ∇)𝑇𝑗 −
√

1
PrRa

(∇ ⋅ ∇)𝑇𝑗
|

|

|

|

|

2

(22)

Coe = 1
𝑁b

𝑁b
∑

𝑗=1

|

|

|

∇ ⋅ 𝐮𝑗
|

|

|

2
(23)

Finally, the boundary losses bounds are also data-based mean-
squared error losses, and therefore, constructed as the data loss but
for the respective other field and dedicated sampling points (cf. Sec-
tion 3.2).

The computation of the physics loss terms as well as the gradients
of the losses with respect to the trainable parameters is facilitated by
automatic differentiation [37].

Pressure centering. An intricacy of finding solutions to the Navier–
Stokes equations is the treatment of the pressure. Since the Boussinesq-
approximated Navier–Stokes equations depend only on the pressure
gradients, the absolute pressure level is not defined. This can lead to
overall pressure levels close to −1 or 1, which should be avoided due
to the vanishing gradients caused by the activation of the scaled output
layer, which is a hyperbolic tangent regardless of the case. Therefore,
we introduce another loss term pc, which centers the pressure values
o variations around a level of 0:

pc =
|

|

|

|

|

|

1
𝑁b

𝑁b
∑

𝑗=1
𝑝𝑗
|

|

|

|

|

|

(24)

Loss component weighting. Having different loss components means
that the described training problem is based on a weighted-objective
optimization. Therefore, weighting factors 𝜆𝑖 are introduced for each
loss term 𝑖 to control their importance with respect to our reference
loss contribution data, i.e. 𝜆data ≡ 1. Since the physical scales contribute
to the weighting of the different loss terms, we consider the use of
non-dimensional equations as a first step in weighting the different
contributions. Due to e.g. large gradients in the boundary layers, this
per se does not guarantee PDE loss terms of an equal order of magnitude
as the data losses. Yet, the order of magnitude of the bulk gradients is
close to the dimensionless velocity, temperature, and pressure values
for the moderate Ra and Pr numbers considered here. This implies that
the meaning of the weights 𝜆𝑖 is close to one of importance in the
present case, while for different dimensionless numbers, it may also
include the compensation of the gradients within the flow.

Since adaptive weighting schemes are still under extensive inves-
tigation [38,39], this study of comparing different activations was
conducted with a constant hierarchical weighting. Therefore, the 𝜆𝑖
are set in relation to data, which was given the highest importance
since the available data represent a direct access to the ground truth.
This is especially the case for the DNS data set used here. For a
possible application with data subject to uncertainty, this evaluation
must certainly be lowered.

Second in the hierarchy is the loss of the PDE, which provides the es-

sential information for the particular assimilation case. For the velocity
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assimilation case, the transport of the scalar 𝑇 carries information about
the velocities. Therefore, the convection–diffusion equation of the tem-
perature is used to infer 𝒖 (cf. velocity measurements based on optical
flow [40]). In the case of temperature assimilation, the information
harnessed to infer the temperature is mainly in the buoyancy-driven
acceleration of the fluid. Hence, the force balance of the Navier–Stokes
equations is more important in this case. This means that 𝜆CDe = 10−1

s assigned for velocity assimilation and 𝜆NSe = 10−1 for temperature
assimilation.

The next step in this hierarchy is occupied by the respective re-
maining loss contribution of those representing the Navier–Stokes and
convection–diffusion equations. This means that 𝜆NSe = 10−2 is assigned
for the velocity assimilation and 𝜆CDe = 10−2 for the temperature
ssimilation. Hyperparameter studies supporting this task-dependent
elation between 𝜆NSe and 𝜆CDe can be found in Appendix B.

The lowest category is the same for both assimilation cases. It
ncludes the loss contribution of the continuity equation (Coe), as
igher weights for this loss tend to smooth the velocity fields [16].
he boundary losses (bounds) are also weighted in this lowest category
o compensate for the fact that they are sampled separately in each
raining step. Finally, the pressure centering loss (pc) is also set to the
owest weight, which is sufficient to keep the pressure at a reference
evel. Thus, the respective weights are set as follows 𝜆Coe = 𝜆bounds =
pc = 10−3.

nitialization. When using periodic activation functions, the initial-
zation of the weights is of paramount importance for a successful
raining result [19], since they determine the spatial and temporal wave
umbers of the output of individual neurons. Therefore, we use the
nitialization of random weights from a uniform distribution in the
nterval [−

√

6∕𝑁 (𝐿−1),
√

6∕𝑁 (𝐿−1)] proposed by Sitzmann et al. [19],
here 𝑁 (𝐿−1) is the number of neurons of the preceding layer.

As also discussed by Sitzmann et al. [19], the first hidden layer ap-
ears suitable to introduce higher spatial and/or temporal frequencies
nto the neural network. Thus, we introduce these higher frequencies
r wave numbers by initializing the weights of the first layer with
andom numbers from an interval [−𝑤

√

6∕𝑁 (0), 𝑤
√

6∕𝑁 (0)]. Here, 𝑤
erves as a factor to broaden the distribution of the initial weights and
requencies. Unless otherwise specified, 𝑤 = 4 was used when sine
ctivation functions were used. A parameter study on the influence of
he factor 𝑤 is also part of Appendix C.

.4. Evaluation metrics

We use the DNS dataset as ground truth to monitor the evolution
f the mean average error MAE𝜉 and Pearson’s correlation coefficient
CC𝜉 with 𝜉 ∈ {𝑢𝑥, 𝑢𝑦, 𝑢𝑧, 𝑇 }. Both are defined as follows:

AE𝜉 = 1
𝑁m

𝑁m
∑

𝑘=1
|𝜉𝑘 − 𝜉𝑘| (25)

PCC𝜉 =
𝑁m

∑𝑁m
𝑘=1 𝜉𝑘𝜉𝑘 −

∑𝑁m
𝑘=1 𝜉𝑘

∑𝑁m
𝑘=1 𝜉𝑘

√

𝑁m
∑𝑁m

𝑘=1 𝜉
2
𝑘 −

(

∑𝑁m
𝑘=1 𝜉𝑘

)2
√

𝑁m
∑𝑁m

𝑘=1 𝜉
2
𝑘 −

(

∑𝑁m
𝑘=1 𝜉𝑘

)2
(26)

Here, 𝑁m is the number of samples used for the calculation. For this
purpose, every fourth grid point of each spatial direction was sampled
for each snapshot.

4. Assimilation results

Since there are more studies on velocity assimilation in the liter-
ature, we will first discuss how the here presented method performs
for the velocity assimilation in Section 4.1. After that, the inverse
task of temperature assimilation and its characteristics are discussed
in Section 4.2.
 a

5 
4.1. Velocity assimilation

Training process. Focusing on the influence of the applied activation
functions, different numbers of neurons of each layer and the various
activations were tested. For each combination, 3 training runs with
different initialization were performed.

Fig. 3 shows the values of the validation metrics described in
Section 3.4 obtained for the different training runs at the end of the
5000th training epoch. While the correlation coefficients (PCC) indicate
how well the PINNs are able to model the existing flow structures,
the additionally shown mean average errors (MAE) also reflect the
eproduction of the correct amplitudes. The symbols represent the
ean values of the three training runs, while the error bars display

he respective minimum and maximum values.
Considering the correlation metric on the left side of Fig. 3, it is

ound that for all activation functions and network sizes 𝑁N an almost
erfect correlation of PCC𝑇 > 0.99 is obtained for the fit of the provided
emperature fields. On the other hand, the correlation of the assimilated
elocity fields depends on 𝑁N because there is an increase of the

correlation with the number of neurons of the network for all activation
functions.

Another trend shown by correlation values of the velocities in
the different cases is that the correlation coefficients for the different
components are always sorted from 𝑢𝑧 with the highest values to 𝑢𝑥

ith the lowest values. This indicates the existence of characteristics
nherent to the studied flow that make it easier to predict individual
omponents, since the differences also occur in the two horizontal
omponents.

To compare periodic and non-periodic activation functions, the
orrelation results for 𝑢𝑥 with sine and hyperbolic tangent activations
re also highlighted in the inserted plot. It shows that a periodic
ctivation performs better than a non-periodic one for all network
izes. In particular, sine-activated networks with a layer width of 128
re reliable able to achieve correlations above 0.9 for all velocity
omponents. It is also noteworthy that a sine-activated network with
layer width of 64 performs similarly to a hyperbolic tangent network
ith twice the number of neurons.

The results for the MAE metric displayed on the right side of Fig. 3
onfirm the above findings with lower errors for an increased number
f neurons and the same hierarchy of activation functions. In the best
ase, the MAE amounts to between 0.018 and 0.027 for the different
elocity components. However, it is noteworthy that the fit error of
he provided temperature field also depends on the varied parameters,
lthough the correlation metric did not show large differences.

Also, doubling the number of neurons to 256 yields only marginal
enefits in terms of the correlation performance. Based on this, the case
f 𝑁𝑁 = 128 will be investigated in more detail below as it represents
he parsimonious case for this flow setup.

To examine these results in more detail, Fig. 4 shows the conver-
ence plots of the discussed metrics (left and center) and a selection of
oss terms (right) over the course of training. The lines represent the
ean values obtained in three different runs. The respective envelopes

f the minima and maxima are represented by the shaded areas. Thus,
e can compare the periodic sine activation (darker colors) with the
yperbolic tangent activation (lighter colors), which represents the
lass of non-periodic activation functions, both for 𝑁N = 128. Due to the
andom initialization, there are significant differences in the correla-
ions metric of the velocities at the beginning of the training. However,
hese differences disappear during the first 100 epochs. Subsequently,
hey remain negligibly small for both activation functions.

Overall, the training process can be divided into several periods.
uring the first period, which lasts until about the 20th epoch, the

raining mainly optimizes the fit of the MLP to the provided tempera-
ure fields. In this phase, the physics losses are reduced due to a general

ttenuation of the initial gradients in the inferred fields. After that,
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Fig. 3. Correlation (left) and MAE (right) metrics of the velocity and temperature fields (top to bottom) achieved after 5000 epochs of velocity-assimilation training with varying
ctivation functions and sizes (𝑁N) of the hidden layers. The markers represent averages over multiple training runs and the error bars the respective minima and maxima.
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he temperature fields are well enough represented by the MLP, so
hat the reduction of the physics losses starts to improve the inferred
elocities. After a few hundred epochs, the correlation coefficient for
he inferred velocity components starts to converge, meaning that the
INN has recovered the most salient velocity structures. This also marks
he beginning of the decrease of the associated MAEs, showing that the
hysics loss terms are not only able to reconstruct the structures, but
lso push the inferred fields towards the quantitatively correct ones.
rom about epoch 1000 onward the MAEs and losses appear to flatten
ut, while they also begin to oscillate.

In summary, both sets of runs would yield negligible improvements
n the validation metrics after the observed training period. The dif-
erence between the periodic and non-periodic activation functions is
hat the sine activation is able to fit the provided temperature field
aster (except for the first 10 epochs) and better. We attribute this to
he periodic nature of the sine, which provides more complexity for a
 i

6 
iven number of neurons. This is beneficial for the inferred fields in two
ays: First, because they also require a certain amount of complexity
rovided by the MLP to be reconstructed, and second, as a better fit
o the given temperature fields yields more accurate gradients to the
hysics losses.

nferred fields. Fig. 5 shows a visual comparison of the ground truth
ields (top row) with the inferred fields (middle row) in a vertical
ross-section of the domain at 𝑥 ≈ 0.5, obtained with sine activation
nd 𝑁N = 128. Additionally, the absolute differences between the top
nd middle fields are shown in the bottom row. While the differences
bottom row) between the temperature fields of the PINN and the
round truth are close to zero, the velocity differences are clearly
isible.

However, looking at the structures in the top and middle rows, it
s found that they are qualitatively similar, although the amplitudes
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Fig. 4. Evolution of the correlation (left), MAE (center) and losses (left) during the training. Darker lines represent the sine-activated cases and lighter lines hyperbolic tangent-
activated ones. Each solid line describes the mean of the single velocity-assimilation training runs at 𝑁N = 128, while the respective transparent envelope is bound by the minimum
and maximum values.
are different. This is confirmed by the plots of the absolute differences,
where the largest deviations occur at the same positions as the high
velocity magnitudes in the ground truth data set. To further investigate
these differences in velocities between the PINN reconstruction and the
ground truth, we subsequently analyze how well the PINN is able to
reproduce extreme values and small structures.

The reproduction of extreme values is considered by analyzing the
global histograms of vertical velocity (𝑢𝑧), temperature (𝑇 ) and vertical
convective heat transport (𝑢𝑧𝑇 ) displayed in Fig. 6. While the gray lines
represent the ground truth data, the colored lines correspond to the
differently activated PINN models for 𝑁N = 128.

First, we consider the temperature data displayed in Fig. 6(b) as it
concerns the data provided to train the PINN. Besides a central peak,
the distribution of the ground truth temperature also shows additional
peaks at 𝑇 = ±0.5, which refer to the constant temperature boundary
conditions. This distribution is closely reproduced by the PINN models
regardless of the activation function, except for the regions near 𝑇 =
±0.5. There, all cases show a shift of the extreme boundary values
towards zero, showing that the extreme gradients within the boundary
layer are difficult to model with a PINN, even if the corresponding data
are available.

Regrading 𝑢𝑧 (Fig. 6(a)), the histograms of all PINN models are sig-
nificantly narrowed, i.e. they underestimate the occurrence of extreme
values. This is consistent with the lack of amplitude visible in the center
sections presented in Fig. 5. However, this effect is less pronounced for
the sine activation than for the non-periodic functions, demonstrating
that the PINN’s ability to model the amplitudes of the velocity vector
field benefits from a periodic activation.

In addition, the PDFs of the convective heat fluxes 𝑢𝑧𝑇 are displayed
in Fig. 6(c). There, the distributions of the PINN-modeled heat fluxes
display the same narrowed characteristic as for the vertical velocity
component. However, the main differences between the various acti-
vation functions occur for the positive tail of the distribution, which
constitutes the strong positive skew of the ground truth. Again, In this
7 
regard, the sine activated PINNs perform best again, as they model the
right tail the closest.

To test the ability to reproduce the turbulence structure in the
assimilated velocity field, power density spectra 𝜙𝑢𝑧𝑢𝑧 (𝑘𝜁 ) are shown
in Fig. 7 in a central horizontal plane 𝑧p = 0.5 (top) and a parallel
plane near the heated bottom plate 𝑧p = 0.02 (bottom). The spectra also
distinguish between the wave numbers 𝑘𝑥 (left) and 𝑘𝑦 (right) in the
two planar directions. For each of these positions, the figure displays
the spatial spectra evaluated with the DNS data and the inferred fields
using sine and hyperbolic tangent activations at 𝑁N = 128. Note that
these results are obtained by applying Fast Fourier Transforms (FFTs)
to non-periodic signals, which means that they are affected by spectral
leakage. This is particularly noticeable for some spectra that flatten out
at high wave numbers. This effect is mitigated by the no-slip boundary
conditions, which impose something like a natural window function.
However, since this leakage is present in both the ground truth and
inferred field data, the comparison is still possible.

In this comparison, the spectra of the PINN-generated fields exhibit
lower power densities overall, regardless of plane, direction, and wave
number. Of the two activation functions shown, the sine activation
generally exhibits smaller differences to the ground truth of the spectral
power densities than the hyperbolic tangent activation, confirming the
observations made with respect to Figs. 5 and 6.

However, it cannot be observed that the gap of the power density
spectra between the PINN models and the ground truth would grow
towards higher wave numbers 𝑘. This means that the impression of the
inferred velocity fields in Fig. 5 is not to be understood as a blurring, as
this would result in small scales being suppressed more than the larger
scales. On the contrary, the softer appearance of the inferred fields is
caused by a general suppression of the amplitudes. For the plane at
𝑧p = 0.02, the gap between ground truth and inferred vertical velocity
actually closes for large wave numbers. This may be caused by an
underrepresentation of the large scales in the inferred vertical velocity

𝑢𝑧, while the existing smaller structures are still well represented.
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Fig. 5. Comparison of the ground truth (top row) and PINN-generated (middle row) fields of the velocity components 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 and the temperature 𝑇 in a central vertical
cross-section for velocity assimilation with sine activation and 𝑁N = 128. The bottom row comprises the contour plots of the respective absolute differences.

Fig. 6. Global histograms of the vertical velocity component 𝑢𝑧 (a), the temperature 𝑇 (b) and the vertical convective heat flux 𝑢𝑧𝑇 (c) for the velocity assimilation cases with
𝑁N = 128. The lines represent an average of the respective training runs, while the envelopes are bound by the minimum and maximum values.
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Fig. 7. Comparison of the spectra in 𝑥- and 𝑦-directions of the 𝑢𝑧 field of the ground truth (gray) and sine (blue) and hyperbolic tangent (orange) activation with 𝑁N = 128. The
top row comprises the spectra in the central horizontal plane and the bottom row for a plane close to the boundary, while the columns comprise the different directions 𝑘𝑥 (left)
and 𝑘𝑦 (right). The lines display the average over the runs while the envelopes are bound by the respective minima and maxima.
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With the PINN, which minimizes the losses in form of the residuum
of the Navier–Stokes equations, the pressure fields are also obtained
during the assimilation. We have chosen to omit their investigation in
the main part of this paper in order to keep the focus on tempera-
ture and velocity, which contribute to the convective heat transport.
For insights into the inferred pressure fields, we refer the reader to
Appendix D.

4.2. Temperature assimilation

Training process. Following the structure of the discussion of the above
section, which deals with velocity assimilation, an overview of the
performance of the temperature assimilation with different activation
functions and neuron numbers 𝑁N is shown in Fig. 8. Here, all combina-
tions of neuron number2 and activation function were analyzed based
on three training runs. The only exception is the best case, 𝑁N = 128
with sine activation, where five training runs were performed. The
displayed markers are again averages over the training runs, and the
error bars represent the respective minima and maxima.

Overall, the two plots display the trend that the correlation co-
efficients (Fig. 8, left side) increase and the absolute errors decrease
(Fig. 8, right side) with increasing neuron number as it was already

2 We limit our variation of the neuron number to changes of the width of
he hidden layers to keep the investigations concise. Another option would be
variation of the number of hidden layers. A brief overview of the effects of

his hyperparameter can be found in Appendix A.
 o

9 
observed for the velocity assimilation. To investigate the characteristics
of the temperature assimilation task, we first discuss the correlation
coefficients in more detail. Starting with 𝑁N = 32, the achieved
correlations are between 0.5 and 0.7, which is rather low. At this stage,
the sine activated neural network has the lowest correlation coefficient
when comparing the activation functions, which means that it performs
the worst in this configuration, while ELU performs the best.

For networks twice the size (𝑁N = 64), the increase in correlation
values is not as great as for the velocity assimilation. More strik-
ingly, the variations between the different runs of both sine and ELU
activations increase with this doubling of 𝑁N.

For the next doubling of 𝑁N to 128, there is a transition where
the PINN models reach correlations of 𝜌 > 0.8 for all activation
functions with sine now giving the best results with 𝜌 > 0.94. Also,
he initialization-induced variations of the results decrease again. To
ighlight this transition to viable inference results, the metrics for
ndividual intermediate training runs for 𝑁N ∈ {74, 84, 97, 111} have
een added to the plots, where they show the sine activation surpassing
he other activation functions for the temperature metrics. The next
oubling to 𝑁N = 256 offers only small improvements, confirming that
he relevant transition takes place between 64 and 128 neurons per
idden layer. As for the velocity assimilation, this renders 𝑁𝑁 = 128 as
arsimonious for the given task, so the detailed analysis is performed
or this neuron number.

Regarding the fit of the provided velocity fields, correlation coeffi-
ients close to 1 are obtained in all cases. However, the associated MAE
alues (Fig. 8, right side) decrease with increasing neurons. Regardless
f the number of neurons, the lowest absolute errors are again obtained
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Fig. 8. Correlation (left) and MAE (right) metrics of the velocity and temperature fields (top to bottom) achieved after 5000 epochs of temperature-assimilation training with
varying activation functions and sizes (𝑁N) of the hidden layers. The markers represent averages over multiple training runs and the error bars the respective minima and maxima.
with sine activation, confirming similar observations for the velocity
assimilation.

Compared to the qualitative differences of the velocity errors ob-
tained for the different activation functions, the differences between
activations for the assimilated temperature fields are smaller (in terms
of logarithmic scaling), but at a higher level overall. However, they
follow the same trends as the correlation coefficients with the sine
activation reaching MAE𝑇 ≈ 0.049 at 𝑁N = 128 and MAE𝑇 ≈ 0.036
at 𝑁N = 256.

To investigate the performance of the training processes for the
different activation functions, Fig. 9 shows the correlation and MAE
metrics along with selected losses for the training process of test cases
with sine (darker) and hyperbolic tangent (lighter) activation at 𝑁N =
128. The lines represent averaged values over the five or three test runs,
respectively, while the shaded area represents the respective envelope
between minima and maxima.
10 
As a first observation, these envelopes cover only insignificantly
small regions with the exception of the correlation metric (left side of
Fig. 9) of the inferred temperatures. There, variations of up to 0.2 can
occur between individual training runs. However, this envelope still
collapses towards the end of the training at 5000 epochs, meaning that
the final results do not depend on a favorable random initialization.

Regarding the correlation progress of the training with respect to
the fields fitted to the ground truth data — here, the velocity fields —
the sine activation produces high (PCC𝑢 > 0.9) correlation values sig-
nificantly faster than the hyperbolic tangent activation. This confirms
the finding from the velocity assimilation, where sine-activated PINNs
are also faster in fitting the provided data.

Next, the evolution of the correlation coefficients for the assimilated
temperature fields is discussed: They initially grow strongly to PCC𝑇 ≈
0.4 for both activation functions considered. After that, the increase of
the correlation value is slower, before the values grow faster again (on
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Fig. 9. Evolution of the correlation (left), MAE (center) and losses (left) during the training. Darker lines represent the sine-activated cases and lighter lines hyperbolic tangent-
activated ones. Each solid line describes the mean of the single temperature-assimilation training runs at 𝑁N = 128, while the respective transparent envelope is bound by the
minimum and maximum values.
a logarithmic epoch scale) at about 1000 epochs. This second growth
period is significantly stronger for the sine activation, i.e. it surpasses
the performance of the hyperbolic tangent during this period.

These two periods of faster growth separated by a slower one
are also obtained for the MAE metrics (center plot of Fig. 9) of the
assimilated temperatures.

Considering the velocity MAEs and the losses (right side of Fig. 9),
decays are observed towards the end of the training, while for the
velocity assimilation they already started to level off after about 1000
epochs. This means that PINNs are harder to train for temperature
assimilation than for velocity assimilation because the 5000 epochs are
not sufficient to achieve a leveling out as in the velocity assimilation
case. A fixed limit of 5000 epochs is still justifiable, since the loga-
rithmic epoch axis still means strongly diminishing returns for further
training, especially regarding the correlation values.

Inferred fields. The comparison between exemplary fields generated by
the sine-activated PINN at 𝑁N = 128 and the ground truth is displayed
in Fig. 10. It includes velocity and temperature fields in a vertical
central section for the ground truth (top row) and the PINN (middle
row) as well as the resulting absolute differences (bottom row).

Similar to the case of velocity assimilation, the fit of the fields
for which data were provided to train the PINN shows hardly any
noticeable absolute errors. However, this is not the case for the inferred
temperature field. While the PINN is able to reproduce all significantly
warm or cold structures, such as the boundary layers and the plumes
originating from them, it particularly struggles in the bulk region. This
especially applies to the region of 0.25 < 𝑧 < 0.5 for the displayed
vertical center section. Since the actual temperature amplitudes are
smaller in this region, so is the resulting buoyancy acceleration. This
finally makes an accurate reconstruction of the temperature more
difficult.
11 
To investigate how the described differences between the ground
truth and the inferred fields manifest themselves in the flow statistics,
the global histograms of 𝑢𝑧, 𝑇 and 𝑢𝑧𝑇 are compared for the different
activation types at 𝑁N = 128 in Fig. 11.

As expected from the results discussed above, the differently acti-
vated PINNs all manage to reproduce the distribution of the vertical
velocity, shown in Fig. 11(a), without significant differences.

Regarding the histograms of the inferred 𝑇 fields shown in
Fig. 11(b), the differently activated PINNs also follow the expectations
based on the velocity assimilation and are not able to cover the whole
width of the temperature range, leading to slightly higher values of
the probability density function for moderate temperature amplitudes.
While the sine and hyperbolic tangent activations perform almost
equally, the ELU activation is able to cover the widest temperature
range. Yet, it also underestimates the occurrence of temperatures close
to 𝑇 = 0.

The histogram of 𝑢𝑧𝑇 in Fig. 11(c) shows the characteristic right-
skewed distribution of convective heat fluxes for the ground truth and
the investigated PINN models. While the ELU-activated PINN was able
to produce the widest temperature distribution, it also exhibits the
largest deviation of the tested activations for the negative tail of 𝑢𝑧𝑇 ,
where all activations overestimate the occurrence of locally negative
convective heat fluxes. We attribute this to an inherent mismatch
between the large temperature amplitudes and the corresponding ver-
tical velocities. In contrast, both tails of the histogram 𝑢𝑧𝑇 are close
to the ground truth for the sine activation. The hyperbolic tangent
activation shows similar deviations to the ELU activation, but with
more underestimation of positive values and less overestimation of
negative values. This illustrates that the distributions of 𝑢𝑧 and 𝑇 alone
are not sufficient to evaluate the quality of the predictions.

Overall, the inferred convective heat flux histogram is in much bet-

ter agreement with the ground truth for the temperature assimilation
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Fig. 10. Comparison of the ground truth (top row) and PINN-generated (middle row) fields of the velocity components 𝑢𝑥, 𝑢𝑦, 𝑢𝑧 and the temperature 𝑇 in a central vertical
cross-section for temperature assimilation with sine activation and 𝑁N = 128. The bottom row comprises the contour plots of the respective absolute differences.

Fig. 11. Global histograms of the vertical velocity component 𝑢𝑧 (a), the temperature 𝑇 (b) and the vertical convective heat flux 𝑢𝑧𝑇 (c) for the temperature assimilation cases
with 𝑁N = 128. The lines represent an average of the respective training runs, while the envelopes are bound by the minimum and maximum values.

Computers and Fluids 283 (2024) 106419 

12 



M. Mommert et al.

a
s
a
d

b
s
a
t
w
o
c
t
q
p
e

Computers and Fluids 283 (2024) 106419 
Fig. 12. Comparison of the spatial spectra of the ground truth (gray) and the inferred temperature fields for sine (blue) and hyperbolic tangent (orange) activation. The top row
comprises the spectra a the central horizontal plane and the bottom row for one close to the boundary, while the columns comprise the different directions 𝑘𝑥 (left) and 𝑘𝑦 (right).
Data shown for the training runs with 𝑁N = 128. The lines display the average over the runs while the envelopes are bound by the respective minima and maxima.
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than for the velocity assimilation. This is due to the fact that the largest
temperature deviations occur in regions where the convective heat flux
is low, namely the bulk region with low temperature amplitudes and
the boundary layers with low vertical velocities.

The power density spectra of the temperature fields are shown in
Fig. 12 for the 𝑥 (left) and 𝑦 (right) directions in the planes 𝑧p = 0.5
(top) and 𝑧p = 0.02 (bottom), to investigate the ability of the differently
ctivated PINNs to assimilate structures of different sizes. Following the
ystematics of the comparable Fig. 7, the sine and hyperbolic tangent
ctivations represent both periodic and non-periodic activations for the
isplayed cases of 𝑁N = 128.

In the bulk flow at 𝑧p = 0.5, the inferred temperature fields of
oth activations, sine and hyperbolic tangent, show that the gap of
pectral power density widens towards higher wave number, implying
deficiency in the reproduction of smaller structures. Since none of

he power densities predicted with the activation functions agrees well
ith the ground truth in either direction, there is no clear advantage for
ne of the two activations. A possible explanation for this shortcoming
ould be numerical effects that add to the thermal diffusivity. However,
he power density spectra for the vicinity of the bottom plate (𝑧p = 0.02)
uestion this explanation, as they both exhibit an overestimation of
ower densities for large wave numbers. This translates to an over-
stimation of the temperature variation on the small scales while the
 d
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variations on the larger scales are still underestimated. Therefore, we
explain this by smaller structures leaking in from the region farther
from the bottom plate, while large scale structures are still suppressed
because the PINNs fall short on reproducing the steap gradients of the
boundary layer.

5. Conclusion and outlook

The assimilation of both velocity and temperature has been pursued
for a case of cubic Rayleigh–Bénard convection at Ra = 106 and Pr =
0.7. The results show that the PINN approach with a periodic activa-
ion function is advantageous for the assimilation in both directions
ompared to other widely used activation functions, which is primarily
xpressed by the high correlation coefficients of the inferred fields with
he ground truth. We attribute the advantages of a sine activation to
ts ability to express the structures of the flow. An example of this
s vortices, which are ubiquitous in turbulent flows and often appear
s counter-rotating pairs or even clusters. To model just the multiple
ign changes of a given velocity component of such structures, several
onotonically activated neurons are required, whereas a single period-

cally activated neuron may be sufficient. Furthermore, sine functions
re resilient against the vanishing gradient problem [19], since their

erivative is close to zero only in small, periodically occurring regions.
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Fig. A.13. Correlation (left) and MAE (right) metrics of the velocity and temperature fields achieved after 5000 epochs of temperature-assimilation training for 𝑁N = 64 with a
varying number of hidden layers for the sine activation. The markers represent averages over multiple training runs and the error bars the respective minima and maxima.
ELU or tanh, on the other hand, produce vanishing gradients for the
negative tail or both tails of the respective functions.

This means that a periodic activation with sine functions eases the
tension between computational speed, cost and accuracy, as it typically
produces higher quality results than the other activation functions
investigated, hyperbolic tangent and ELU, for the same network size.

However, the inferred fields still exhibit some deviations regarding
the absolute values. Further increasing the size of the MLP architecture
mitigates this problem, as our results show decreasing errors for larger
neural network layers.

The presented investigations also revealed a limitation regarding the
benefits of a sine activation. We found that, for temperature assimila-
tion, sine activations were only beneficial for sufficiently large network
sizes.

Overall, we found that the direction of assimilation, generating
velocity fields from temperature data or vice versa, has further sig-
nificant influences on the results: Compared to velocity assimilation,
temperature assimilation exhibited a critical range of the number of
neurons of each hidden layer, which has to be exceeded to obtain viable
results. Furthermore, the convergence of the training is shifted to a
larger number of epochs for the temperature assimilation. Due to the
complexity of the task, there are several possible reasons for this: It
could be caused by the different weighting of the PDEs in action, the
overall conditioning of the PDE-terms that are crucial for the inference,
or more mundane facts, e.g. that the MLPs have three fields to fit and
two to infer in the temperature assimilation case, while the ratio is one
to four for the velocity assimilation. Since the temperature assimilation
is more challenging, the deviations of the inferred fields from the
ground truth are visually more prominent. However, the convective
heat flux statistics are predicted significantly better than for the velocity
assimilation, as its regions prone to error have less influence on the
statistics.

Future challenges include pushing for higher Ra and Pr numbers,
for which it may not be feasible to provide fully resolved fields. With
respect to the necessary expressiveness for the temperature assimi-
lation, 𝑁 = 128 also proved to be close to the lower threshold
N

14 
for obtaining viable results, which we expect to increase for higher
dimensionless numbers. At the same time, further features such as
von Neumann boundary conditions or geometrically more complex
boundary shapes should be implemented to improve the assimilation
results by providing more information about the flow, which is typically
available. Besides that, network architecture, loss formulations, and the
training process prove to be areas with a vast scope for design and thus
also optimization potential. Relevant examples of such optimizations
have been presented only recently by Toscano et al. [41] and promise
efficiency improvements.
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Table B.2
Correlation Performance of the different assimilation tasks for a sine activated PINN with 𝑁𝑁 = 128 after
5000 epochs averaged over the respective number of runs (three except for the temperature assimilation
with the corresponding weight set with five runs).

𝒖 assimilation 𝑇 assimilation

𝑃𝐶𝐶𝑢𝑥 𝑃𝐶𝐶𝑢𝑦 𝑃𝐶𝐶𝑢𝑧 𝑃𝐶𝐶𝑇 𝑃𝐶𝐶𝑢𝑥 𝑃𝐶𝐶𝑢𝑦 𝑃𝐶𝐶𝑢𝑧 𝑃𝐶𝐶𝑇

weight set 𝒖 0.938 0.951 0.968 0.998 1.000 1.000 1.000 0.856
weight set 𝑇 0.892 0.886 0.929 0.999 1.000 1.000 1.000 0.946
Fig. B.14. Correlation (left) and MAE (right) metrics of the velocity and temperature fields achieved after 5000 epochs of temperature-assimilation training for 𝑁N = 128 with a
varying convection–diffusion loss weight 𝜆CDe for the sine activation. The markers represent averages over multiple training runs and the error bars the respective minima and
maxima.
Affairs, Labour and Transport’’ and ‘‘Federal Ministry for Economic
Affairs and Climate Action’’.

Appendix A. Hyperparameter study — number of hidden layers

While in the main part of the paper the layer width 𝑁𝑁 is varied
to adjust the complexity of the neural network for different tasks and
activation functions, this appendix aims to give an outlook on the
variation of the number of hidden layers. For this purpose, we test
the temperature assimilation for sine activated PINNs with a constant
layer width of 𝑁𝑁 = 64, which was below the threshold for obtaining
usable results with five hidden layers of neurons. Hence, three test runs
each were performed for increasing numbers of hidden layers up to
13. As expected, the results displayed in Fig. A.13 show an increase
in assimilation performance for larger numbers of hidden layers. Yet,
the correlation values of a PINN of 5 hidden layers with 𝑁𝑁 = 128
are not reached by the configuration of 13 hidden layers with 𝑁𝑁 =
64. Overall, the determination of an optimal aspect ratio for the MLP
architecture requires further investigation, which should be part of
future studies.
15 
Appendix B. Hyperparameter study — selected loss weights 𝝀𝒊

In Section 3.3 paragraph on weighting the loss components, two
different sets of loss weights 𝜆𝑖 are introduced. Specifically, there is one
set for velocity assimilation (𝜆NSe = 10−2, 𝜆CDe = 10−1, 𝜆Coe = 𝜆bounds =
𝜆pc = 10−3) and one for temperature assimilation (𝜆NSe = 10−1, 𝜆CDe =
10−2, 𝜆Coe = 𝜆bounds = 𝜆pc = 10−3). To underpin the distinction between
a convection–diffusion driven velocity assimilation and a Navier–Stokes
driven temperature assimilation, we also performed three training runs
with the opposite set of weights. The results in Table B.2 show that
distinguishing between the different assimilation mechanisms is indeed
advantageous for the assimilation tasks.

To provide more detail on how the convection–diffusion equation
of the temperature affects the performance of the temperature assimi-
lation, a small hyperparameter study of 𝜆CDe is provided by Fig. B.14.
For this study, the remaining set of weights is kept constant at 𝜆NSe =
10−1 and 𝜆Coe = 𝜆bounds = 𝜆pc = 10−3. Besides the existing 5 runs
for 𝜆CDe = 10−2 from the main investigation, 3 additional runs were
performed for 𝜆CDe = 10−3 and 𝜆CDe = 10−1. Overall the final correla-

tion coefficients and absolute errors achieved by the training exhibit
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Fig. C.15. Correlation (left) and MAE (right) metrics of the velocity and temperature fields achieved after 5000 epochs of temperature-assimilation training for 𝑁N = 128 with a
varying initialization parameter 𝑤 for the sine activation. The markers represent averages over multiple training runs and the error bars the respective minima and maxima.
only small variations, although the order of magnitude of 𝜆CDe was
varied. This confirms, that the loss of the convection–diffusion equation
is less relevant for the performance of the temperature assimilation
than the Navier–Stokes loss. Furthermore, the decrease in assimilation
performance is slightly more pronounced for increased 𝜆CDe. A possible
reason for this behavior could be the existence of a trivial solution
𝑇 = const. for the convection–diffusion equation. A similar behavior can
be observed for the continuity equation with the trivial solution 𝒖 = 0
which leads to decaying PINN performances if weighted to strong [16].

Appendix C. Hyperparameter study — initialization factor 𝒘

As mentioned in Section 3.3, the sine activation also allows for
different initialization strategies. Here we varied the prefactor 𝑤 of the
range of the random uniformly distributed initial weights of the first
hidden layer. Fig. C.15 shows the assimilation performance of a sine-
activated PINN with 𝑁N = 128 for 𝑤 ∈ {1, 2, 4, 8, 16} in the style of
Fig. 8, for which three training runs with different random initialization
were carried out for each 𝑤 ≠ 4.

It shows that the sine-activated PINN achieves the best correlation
results of the inferred 𝑇 field and the lowest MAE of the fitted velocity
fields for 𝑤 = 4. However, the lowest MAE of the assimilated temper-
atures was obtained for 𝑤 = 1. Overall, the performance of the PINN
varies only slightly for 1 ≤ 𝑤 ≤ 4, while it degrades significantly for
higher values. For 𝑤 = 16, even the correlation coefficients of the fitted
velocity components start to deteriorate.

A possible explanation for the poor performance of large 𝑤 is that
they introduce unphysically high spatio-temporal wave numbers into
the fields represented by the MLP. The high wave numbers are not
regularized by the data loss terms, since a fit to data with lower wave
numbers also works on the basis of the excessively high wave numbers.
This means that the wave numbers of neurons, that were initialized
non-physically high, are not being reduced during training. This means
16 
that these neurons will either be suppressed by the physics losses during
training, causing them to die, or they will persistently disturb the
physics represented by the PINN.

Therefore, we would rather recommend the use of 𝑤 = 1, if a
hyperparameter study of 𝑤 is not feasible, since its critical value will
certainly dependent on the investigated flow.

Appendix D. Pressure fields

Velocity assimilation. Fig. D.16 displays the comparison between the
ground truth pressure field including its spatial gradients and the
corresponding inferred fields. It shows that the assimilated pressures
are as good as the inferred velocity fields, since they exhibit the same
characteristics:

All structures, such as the depression at 𝑦 ≈ 0.6, 𝑧 ≈ 0.2 and the
rises near the boundaries, are represented. However, the PINN falls
short in reconstructing the amplitudes. This shows that, in this case,
the velocities are mainly inferred by the convection–diffusion equation
and then the loss of the Navier–Stokes equations acts to reconstruct a
pressure (gradient) field according to the inferred velocities.

Temperature assimilation. The comparison of the pressure field and
its gradients for the temperature assimilation case is displayed in
Fig. D.17. Unlike velocity assimilation, in this case the pressure can
be assimilated directly from the fitted velocity fields. This leads to
a better agreement of the inferred pressure fields with the ground
truth than for velocity assimilation. The largest remaining deviations
occur for 𝜕𝑧𝑝 in the same region as the largest bulk deviation of the
inferred temperatures. This shows that the assimilation of both pressure
and temperature poses a complication for the PINN approach. This
means that supporting one field with additional information, e.g. by
implementing pressure taps in an experimental context, should improve
the inference performance of both fields.
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Fig. D.16. Comparison of the ground truth (top row) and PINN-generated (middle row) fields of the pressure and its spatial gradients in a central vertical cross-section for velocity
assimilation with sine activation and 𝑁N = 128. The bottom row comprises the contour plots of the gradients’ absolute differences.
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Fig. D.17. Comparison of the ground truth (top row) and PINN-generated (middle row) fields of the pressure and its spatial gradients in a central vertical cross-section for
temperature assimilation with sine activation and 𝑁N = 128. The bottom row comprises the contour plots of the gradients’ absolute differences.
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