Quere, Gabriel und Stulp, Freek und Filliat, David und Silvério, João (2023) A probabilistic approach for learning and adapting shared control skills with the human in the loop. In: 16th International Workshop on Human-Friendly Robotics, HFR 2023. Workshop on Human-Friendly Robotics (HFR 2023), 2023-09-20 - 2023-09-21, Munich, Germany.
PDF
5MB |
Offizielle URL: https://sites.google.com/view/hfr2023/program-details
Kurzfassung
Assistive robots promise to be of great help to wheelchair users with motor impairments, for example for activities of daily living. Using shared control to provide task-specific assistance -- for instance with the Shared Control Templates (SCT) framework -- facilitates user control, even with low-dimensional input signals. However, designing SCTs is a laborious task requiring robotic expertise. To facilitate their design, we propose a method to learn one of their core components -- active constraints -- from demonstrated end-effector trajectories. We use a probabilistic model, Kernelized Movement Primitives, which additionally allows adaptation from user commands to improve the shared control skills, during both design and execution. We demonstrate that the SCTs so acquired can be successfully used to pick up an object, as well as adjusted for new environmental constraints, with our assistive robot EDAN.
elib-URL des Eintrags: | https://elib.dlr.de/203010/ | ||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Konferenzbeitrag (Poster) | ||||||||||||||||||||
Titel: | A probabilistic approach for learning and adapting shared control skills with the human in the loop | ||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||
Datum: | 21 September 2023 | ||||||||||||||||||||
Erschienen in: | 16th International Workshop on Human-Friendly Robotics, HFR 2023 | ||||||||||||||||||||
Referierte Publikation: | Nein | ||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||
Gold Open Access: | Nein | ||||||||||||||||||||
In SCOPUS: | Nein | ||||||||||||||||||||
In ISI Web of Science: | Nein | ||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||
Stichwörter: | Shared control, Learning from demonstrations, Probabilistic modeling | ||||||||||||||||||||
Veranstaltungstitel: | Workshop on Human-Friendly Robotics (HFR 2023) | ||||||||||||||||||||
Veranstaltungsort: | Munich, Germany | ||||||||||||||||||||
Veranstaltungsart: | Workshop | ||||||||||||||||||||
Veranstaltungsbeginn: | 20 September 2023 | ||||||||||||||||||||
Veranstaltungsende: | 21 September 2023 | ||||||||||||||||||||
Veranstalter : | Technical University of Munich (TUM) and Deutsches Zentrum für Luft- und Raumfahrt (DLR) | ||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||
HGF - Programmthema: | Robotik | ||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||
DLR - Forschungsgebiet: | R RO - Robotik | ||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - Terrestrische Assistenz-Robotik | ||||||||||||||||||||
Standort: | Oberpfaffenhofen | ||||||||||||||||||||
Institute & Einrichtungen: | Institut für Robotik und Mechatronik (ab 2013) > Kognitive Robotik | ||||||||||||||||||||
Hinterlegt von: | Quere, Gabriel | ||||||||||||||||||||
Hinterlegt am: | 27 Feb 2024 13:41 | ||||||||||||||||||||
Letzte Änderung: | 24 Apr 2024 21:03 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags