Shutin, Dmitriy (2024) Asymptotic Behavior of Super-resolution Sparse Bayesian Learning. In: 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024. IEEE. IEEE International Conference on Acoustics, Speech and Signal Processing, 2024-04-14 - 2024-04-19, Seoul, Südkorea. doi: 10.1109/ICASSP48485.2024.10445954. ISBN 979-835034485-1. ISSN 1520-6149.
|
PDF
- Nur DLR-intern zugänglich
315kB |
Kurzfassung
Sparse Bayesian Learning with dictionary refinement (SBL-DR) is a gridless technique for sparse signal reconstruction, focusing on super-resolution estimation of spectral line locations and their quantity. Its cost function coincides with that of stochastic maximum likelihood (SML), a well-known method in array processing for estimating frequencies of complex exponentials. While SML exhibits consistency and efficiency with growing array snapshots or size, SBL-DR faces inconsistency with only one measurement snapshot. This study explores SBL-DR asymptotic behavior using a single measurement snapshot and growing sample size using Gamma-convergence theory. It computes upper and lower bounds for the SBL-DR cost function, showing their convergence to a Gamma-limit that is minimized at true signal locations. By leveraging the properties of Gamma-convergence, it is established that the minima of the SBL-DR cost function asymptotically approach those of the Gamma-limit function, thereby achieving consistency for SBL-DR.
| elib-URL des Eintrags: | https://elib.dlr.de/202757/ | ||||||||
|---|---|---|---|---|---|---|---|---|---|
| Dokumentart: | Konferenzbeitrag (Poster) | ||||||||
| Titel: | Asymptotic Behavior of Super-resolution Sparse Bayesian Learning | ||||||||
| Autoren: |
| ||||||||
| Datum: | April 2024 | ||||||||
| Erschienen in: | 49th IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2024 | ||||||||
| Open Access: | Nein | ||||||||
| Gold Open Access: | Nein | ||||||||
| In SCOPUS: | Ja | ||||||||
| In ISI Web of Science: | Nein | ||||||||
| DOI: | 10.1109/ICASSP48485.2024.10445954 | ||||||||
| Verlag: | IEEE | ||||||||
| ISSN: | 1520-6149 | ||||||||
| ISBN: | 979-835034485-1 | ||||||||
| Status: | veröffentlicht | ||||||||
| Stichwörter: | Sparse Bayesian learning, super-resolution, sparsity, Gamma-convergence | ||||||||
| Veranstaltungstitel: | IEEE International Conference on Acoustics, Speech and Signal Processing | ||||||||
| Veranstaltungsort: | Seoul, Südkorea | ||||||||
| Veranstaltungsart: | internationale Konferenz | ||||||||
| Veranstaltungsbeginn: | 14 April 2024 | ||||||||
| Veranstaltungsende: | 19 April 2024 | ||||||||
| Veranstalter : | IEEE | ||||||||
| HGF - Forschungsbereich: | keine Zuordnung | ||||||||
| HGF - Programm: | keine Zuordnung | ||||||||
| HGF - Programmthema: | keine Zuordnung | ||||||||
| DLR - Schwerpunkt: | Digitalisierung | ||||||||
| DLR - Forschungsgebiet: | D IAS - Innovative autonome Systeme | ||||||||
| DLR - Teilgebiet (Projekt, Vorhaben): | D - STARE | ||||||||
| Standort: | Oberpfaffenhofen | ||||||||
| Institute & Einrichtungen: | Institut für Kommunikation und Navigation > Nachrichtensysteme | ||||||||
| Hinterlegt von: | Shutin, Dmitriy | ||||||||
| Hinterlegt am: | 15 Feb 2024 17:51 | ||||||||
| Letzte Änderung: | 11 Feb 2025 13:46 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags