elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Barrierefreiheit | Kontakt | English
Schriftgröße: [-] Text [+]

Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty

Hechinger, Katharina und Schweden, Christoph und Zhu, Xiao Xiang und Kauermann, Göran (2025) Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty. Statistical Modelling. SAGE Publications. doi: 10.1177/1471082X251371796. ISSN 1471-082X.

[img] PDF - Preprintversion (eingereichte Entwurfsversion)
9MB

Offizielle URL: https://doi.org/10.1177/1471082X251371796

Kurzfassung

Uncertainty in machine learning models is a timely and vast field of research. In supervised learning, uncertainty can already occur in the first stage of the training process, the annotation phase. This scenario is particularly evident when some instances cannot be definitively classified. In other words, there is inevitable ambiguity in the annotation step and hence, not necessarily a single "ground truth" associated with each instance. The main idea of this work is to drop the assumption of a ground truth label and instead embed the annotations into a multidimensional space. This embedding is derived from the empirical distribution of annotations in a Bayesian setup, modeled via a Dirichlet-Multinomial framework. We estimate the model parameters and posteriors using a stochastic Expectation Maximisation algorithm with Markov Chain Monte Carlo steps. The methods developed in this paper readily extend to various situations where multiple annotators independently label instances. To showcase the generality of the proposed approach, we apply our approach to three benchmark datasets for image classification and Natural Language Inference, where multiple annotations per instance are available. Besides the embeddings, we can investigate the resulting correlation matrices, which reflect the semantic similarities of the original classes very well for all three exemplary datasets.

elib-URL des Eintrags:https://elib.dlr.de/202329/
Dokumentart:Zeitschriftenbeitrag
Titel:Human-in-the-loop: Towards Label Embeddings for Measuring Classification Difficulty
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Hechinger, Katharinakatharina.hechinger (at) stat.uni-muenchen.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Schweden, ChristophChristoph.Koller (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Zhu, Xiao Xiangxiaoxiang.zhu (at) tum.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Kauermann, Görangoeran.kauermann (at) lmu.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:2025
Erschienen in:Statistical Modelling
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Ja
DOI:10.1177/1471082X251371796
Verlag:SAGE Publications
ISSN:1471-082X
Status:veröffentlicht
Stichwörter:Annotation Uncertainty, Multiple Labels, Label Variation, Stochastic EM Algorithm, Dirichlet-Multinomial Model, Classification and Clustering
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - Künstliche Intelligenz
Standort: Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > EO Data Science
Hinterlegt von: Koller, Christoph
Hinterlegt am:18 Nov 2025 13:34
Letzte Änderung:18 Nov 2025 14:20

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
OpenAIRE Validator logo electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.