Kortum, Karl und Singha, Suman und Spreen, Gunnar und Hutter, Nils und Jutila, Arttu und Haas, Christian (2024) SAR Deep Learning Sea Ice Retrieval Trained with Airborne Laser Scanner Measurements from the MOSAiC Expedition. The Cryosphere, 18 (5), Seiten 2207-2222. Copernicus Publications. doi: 10.5194/tc-18-2207-2024. ISSN 1994-0416.
PDF
- Verlagsversion (veröffentlichte Fassung)
9MB |
Offizielle URL: https://doi.org/10.5194/tc-18-2207-2024
Kurzfassung
Automated sea ice charting from Synthetic Aperture Radar (SAR) has been researched for more than a decade and still, we are not close to unlocking the full potential of automated solutions in terms of resolution and accuracy. The central complications arise from ground truth data not being readily available in the polar regions. In this paper, we build a dataset from 20 near coincident X-Band SAR acquisitions and as many Airborne Laser Scanner (ALS) measurements from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), between October and May. This dataset is then used to assess the accuracy and robustness of five machine learning based approaches, by deriving classes from the freeboard, surface roughness (standard deviation at 0.5 m correlation length) and reflectance. It is shown that there is only a weak correllation of the radar backscatter and the sea ice topography. Accuracies between 40 % and 69 % percent and robustnesses between 68 % and 85 % give a realistic insight into modern classifiers' performance across a range of ice conditions over 8 months. It also marks the first time algorithms are trained entirely with labels from coincident measurements, allowing for a probabilistic class retrieval. The results show that segmentation models able to learn from the class distribution significantly perform pixel-wise classification approaches.
elib-URL des Eintrags: | https://elib.dlr.de/202267/ | ||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Zeitschriftenbeitrag | ||||||||||||||||||||||||||||
Zusätzliche Informationen: | Published source must be acknowledged with citation! How to cite: Kortum, K., Singha, S., Spreen, G., Hutter, N., Jutila, A., and Haas, C.: SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition, The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, 2024. | ||||||||||||||||||||||||||||
Titel: | SAR Deep Learning Sea Ice Retrieval Trained with Airborne Laser Scanner Measurements from the MOSAiC Expedition | ||||||||||||||||||||||||||||
Autoren: |
| ||||||||||||||||||||||||||||
Datum: | 3 Mai 2024 | ||||||||||||||||||||||||||||
Erschienen in: | The Cryosphere | ||||||||||||||||||||||||||||
Referierte Publikation: | Ja | ||||||||||||||||||||||||||||
Open Access: | Ja | ||||||||||||||||||||||||||||
Gold Open Access: | Ja | ||||||||||||||||||||||||||||
In SCOPUS: | Ja | ||||||||||||||||||||||||||||
In ISI Web of Science: | Ja | ||||||||||||||||||||||||||||
Band: | 18 | ||||||||||||||||||||||||||||
DOI: | 10.5194/tc-18-2207-2024 | ||||||||||||||||||||||||||||
Seitenbereich: | Seiten 2207-2222 | ||||||||||||||||||||||||||||
Verlag: | Copernicus Publications | ||||||||||||||||||||||||||||
ISSN: | 1994-0416 | ||||||||||||||||||||||||||||
Status: | veröffentlicht | ||||||||||||||||||||||||||||
Stichwörter: | Oceanography, SAR, sea ice, lead fraction, drift, MOSAiC, Sentinel-1 | ||||||||||||||||||||||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||||||||||||||||||||||
HGF - Programm: | Raumfahrt | ||||||||||||||||||||||||||||
HGF - Programmthema: | Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Schwerpunkt: | Raumfahrt | ||||||||||||||||||||||||||||
DLR - Forschungsgebiet: | R EO - Erdbeobachtung | ||||||||||||||||||||||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | R - SAR-Methoden | ||||||||||||||||||||||||||||
Standort: | Bremen , Oberpfaffenhofen | ||||||||||||||||||||||||||||
Institute & Einrichtungen: | Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung | ||||||||||||||||||||||||||||
Hinterlegt von: | Kaps, Ruth | ||||||||||||||||||||||||||||
Hinterlegt am: | 07 Mai 2024 09:52 | ||||||||||||||||||||||||||||
Letzte Änderung: | 07 Mai 2024 09:52 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags