elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

SAR Deep Learning Sea Ice Retrieval Trained with Airborne Laser Scanner Measurements from the MOSAiC Expedition

Kortum, Karl und Singha, Suman und Spreen, Gunnar und Hutter, Nils und Jutila, Arttu und Haas, Christian (2024) SAR Deep Learning Sea Ice Retrieval Trained with Airborne Laser Scanner Measurements from the MOSAiC Expedition. The Cryosphere, 18 (5), Seiten 2207-2222. Copernicus Publications. doi: 10.5194/tc-18-2207-2024. ISSN 1994-0416.

[img] PDF - Verlagsversion (veröffentlichte Fassung)
9MB

Offizielle URL: https://doi.org/10.5194/tc-18-2207-2024

Kurzfassung

Automated sea ice charting from Synthetic Aperture Radar (SAR) has been researched for more than a decade and still, we are not close to unlocking the full potential of automated solutions in terms of resolution and accuracy. The central complications arise from ground truth data not being readily available in the polar regions. In this paper, we build a dataset from 20 near coincident X-Band SAR acquisitions and as many Airborne Laser Scanner (ALS) measurements from the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC), between October and May. This dataset is then used to assess the accuracy and robustness of five machine learning based approaches, by deriving classes from the freeboard, surface roughness (standard deviation at 0.5 m correlation length) and reflectance. It is shown that there is only a weak correllation of the radar backscatter and the sea ice topography. Accuracies between 40 % and 69 % percent and robustnesses between 68 % and 85 % give a realistic insight into modern classifiers' performance across a range of ice conditions over 8 months. It also marks the first time algorithms are trained entirely with labels from coincident measurements, allowing for a probabilistic class retrieval. The results show that segmentation models able to learn from the class distribution significantly perform pixel-wise classification approaches.

elib-URL des Eintrags:https://elib.dlr.de/202267/
Dokumentart:Zeitschriftenbeitrag
Zusätzliche Informationen:Published source must be acknowledged with citation! How to cite: Kortum, K., Singha, S., Spreen, G., Hutter, N., Jutila, A., and Haas, C.: SAR deep learning sea ice retrieval trained with airborne laser scanner measurements from the MOSAiC expedition, The Cryosphere, 18, 2207–2222, https://doi.org/10.5194/tc-18-2207-2024, 2024.
Titel:SAR Deep Learning Sea Ice Retrieval Trained with Airborne Laser Scanner Measurements from the MOSAiC Expedition
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Kortum, Karlkarl.kortum (at) dlr.de / University of Bremen, Institute of Environmental Physics (IUP), Bremen, Germanyhttps://orcid.org/0000-0002-8418-6484NICHT SPEZIFIZIERT
Singha, SumanNational Center for Climate Research, Danish Meteorological Institute (DMI)/ Department of Geography, University of Calgary, Calgary, AB, Canadahttps://orcid.org/0000-0002-1880-6868NICHT SPEZIFIZIERT
Spreen, GunnarInstitute of Environmental Physics (IUP), University of Bremen, Otto-Hahn-Allee 1, 28359 Bremen, Germanyhttps://orcid.org/0000-0003-0165-8448NICHT SPEZIFIZIERT
Hutter, NilsSea Ice Physics, Alfred-Wegener-Institut (AWI), Bremerhaven, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Jutila, ArttuFinnish Meteorological Institute (FMI), Helsinki, Finland / Alfred-Wegener-Institut (AWI), Bremerhaven, GermanyNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Haas, ChristianSea Ice Physics, Alfred-Wegener-Institut (AWI), Bremerhaven, Germanyhttps://orcid.org/0000-0002-7674-3500NICHT SPEZIFIZIERT
Datum:3 Mai 2024
Erschienen in:The Cryosphere
Referierte Publikation:Ja
Open Access:Ja
Gold Open Access:Ja
In SCOPUS:Ja
In ISI Web of Science:Ja
Band:18
DOI:10.5194/tc-18-2207-2024
Seitenbereich:Seiten 2207-2222
Verlag:Copernicus Publications
ISSN:1994-0416
Status:veröffentlicht
Stichwörter:Oceanography, SAR, sea ice, lead fraction, drift, MOSAiC, Sentinel-1
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Raumfahrt
HGF - Programmthema:Erdbeobachtung
DLR - Schwerpunkt:Raumfahrt
DLR - Forschungsgebiet:R EO - Erdbeobachtung
DLR - Teilgebiet (Projekt, Vorhaben):R - SAR-Methoden
Standort: Bremen , Oberpfaffenhofen
Institute & Einrichtungen:Institut für Methodik der Fernerkundung > SAR-Signalverarbeitung
Hinterlegt von: Kaps, Ruth
Hinterlegt am:07 Mai 2024 09:52
Letzte Änderung:07 Mai 2024 09:52

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.