Jose, Basil and Hampp, Fabian (2023) Machine learning based spray process quantification. International Journal of Multiphase Flow, 172, p. 104702. Elsevier. doi: 10.1016/j.ijmultiphaseflow.2023.104702. ISSN 0301-9322.
Full text not available from this repository.
Official URL: https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104702
Item URL in elib: | https://elib.dlr.de/202113/ | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Document Type: | Article | ||||||||||||
Title: | Machine learning based spray process quantification | ||||||||||||
Authors: |
| ||||||||||||
Date: | 21 December 2023 | ||||||||||||
Journal or Publication Title: | International Journal of Multiphase Flow | ||||||||||||
Refereed publication: | Yes | ||||||||||||
Open Access: | No | ||||||||||||
Gold Open Access: | No | ||||||||||||
In SCOPUS: | Yes | ||||||||||||
In ISI Web of Science: | Yes | ||||||||||||
Volume: | 172 | ||||||||||||
DOI: | 10.1016/j.ijmultiphaseflow.2023.104702 | ||||||||||||
Page Range: | p. 104702 | ||||||||||||
Publisher: | Elsevier | ||||||||||||
ISSN: | 0301-9322 | ||||||||||||
Status: | Published | ||||||||||||
Keywords: | Machine learning, spray characteristics | ||||||||||||
HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||
HGF - Program: | Aeronautics | ||||||||||||
HGF - Program Themes: | Clean Propulsion | ||||||||||||
DLR - Research area: | Aeronautics | ||||||||||||
DLR - Program: | L CP - Clean Propulsion | ||||||||||||
DLR - Research theme (Project): | L - Components and Emissions, E - Combustion and Power Plant Systems | ||||||||||||
Location: | Stuttgart | ||||||||||||
Institutes and Institutions: | Institute of Combustion Technology > Combustion Diagnostícs | ||||||||||||
Deposited By: | Geigle, Dr. Klaus Peter | ||||||||||||
Deposited On: | 22 Jan 2024 09:37 | ||||||||||||
Last Modified: | 29 Jan 2024 13:07 |
Repository Staff Only: item control page