elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Imprint | Privacy Policy | Contact | Deutsch
Fontsize: [-] Text [+]

Machine learning based spray process quantification

Jose, Basil and Hampp, Fabian (2023) Machine learning based spray process quantification. International Journal of Multiphase Flow, 172, p. 104702. Elsevier. doi: 10.1016/j.ijmultiphaseflow.2023.104702. ISSN 0301-9322.

Full text not available from this repository.

Official URL: https://dx.doi.org/10.1016/j.ijmultiphaseflow.2023.104702


Item URL in elib:https://elib.dlr.de/202113/
Document Type:Article
Title:Machine learning based spray process quantification
Authors:
AuthorsInstitution or Email of AuthorsAuthor's ORCID iDORCID Put Code
Jose, BasilDLR-VT / IVLR, Uni StuttgartUNSPECIFIEDUNSPECIFIED
Hampp, FabianIVLR, Uni Stuttgarthttps://orcid.org/0000-0002-9895-4288UNSPECIFIED
Date:21 December 2023
Journal or Publication Title:International Journal of Multiphase Flow
Refereed publication:Yes
Open Access:No
Gold Open Access:No
In SCOPUS:Yes
In ISI Web of Science:Yes
Volume:172
DOI:10.1016/j.ijmultiphaseflow.2023.104702
Page Range:p. 104702
Publisher:Elsevier
ISSN:0301-9322
Status:Published
Keywords:Machine learning, spray characteristics
HGF - Research field:Aeronautics, Space and Transport
HGF - Program:Aeronautics
HGF - Program Themes:Clean Propulsion
DLR - Research area:Aeronautics
DLR - Program:L CP - Clean Propulsion
DLR - Research theme (Project):L - Components and Emissions, E - Combustion and Power Plant Systems
Location: Stuttgart
Institutes and Institutions:Institute of Combustion Technology > Combustion Diagnostícs
Deposited By: Geigle, Dr. Klaus Peter
Deposited On:22 Jan 2024 09:37
Last Modified:29 Jan 2024 13:07

Repository Staff Only: item control page

Browse
Search
Help & Contact
Information
electronic library is running on EPrints 3.3.12
Website and database design: Copyright © German Aerospace Center (DLR). All rights reserved.