Hochstuhl, Sylvia and Pfeffer, Niklas and Thiele, Antje and Hinz, Stefan and Amao Oliva, Joel Alfredo and Scheiber, Rolf and Reigber, Andreas and Dirks, Holger (2023) Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2). [Other]
Full text not available from this repository.
Official URL: https://www.radar-service.eu/radar/de/dataset/IAzBEMXnbTndvIZG#
Abstract
Pol-InSAR-Island is the first publicly available multi-frequency Polarimetric Interferometric Synthetic Aperture Radar (Pol-InSAR) benchmark dataset for land cover classification. The strong scientific interest and the accompanying rapid development of machine learning, in particular deep learning, has led to a significant improvement in automatic image interpretation in recent years. Research generally focuses on classification or segmentation of optical images, but there are already several successful approaches that apply deep learning techniques to the analysis of PolSAR or Pol-InSAR images. While the success of learning-based methods for the analysis of optical images has been strongly driven by public benchmark datasets such as ImageNet and Cityscapes, which contain a large number of annotated training and test data, comparable datasets for the PolSAR and especially the Pol-InSAR domain are almost non-existent. To fill this gap, this work presents a new multi-frequency Pol-InSAR benchmark dataset for training and testing learning-based methods. The dataset contains Pol-InSAR data acquired in S- and L-band by DLR's airborne F-SAR system over the East Frisian island Baltrum. To allow interferometric analysis a repeat-pass configuration with a time offset of several minutes and a vertical baseline of 40 m is used. The image data are given as geocoded 6 × 6 coherency matrices on a 1 m × 1 m grid and is labeled by 12 different land cover classes. The Pol-InSAR-Island dataset is intended to improve the development of new learning-based approaches for multi-frequency Pol-InSAR classification. To ensure the comparability of various approaches, a defined division of the data into training and testing sections is given. For more information, refer to the corresponding research article: https://doi.org/10.1016/j.ophoto.2023.100047 Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2) is the updated version of the dataset. The PolSAR as well as the label images remain unchanged, but additional files containing the corresponding incidence angle and the vertical wavenumbers are added.
| Item URL in elib: | https://elib.dlr.de/202085/ | ||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Document Type: | Other | ||||||||||||||||||||||||||||||||||||
| Additional Information: | Open Scientific Data Set | ||||||||||||||||||||||||||||||||||||
| Title: | Pol-InSAR-Island - A Benchmark Dataset for Multi-frequency Pol-InSAR Data Land Cover Classification (Version 2) | ||||||||||||||||||||||||||||||||||||
| Authors: |
| ||||||||||||||||||||||||||||||||||||
| Date: | 18 August 2023 | ||||||||||||||||||||||||||||||||||||
| Journal or Publication Title: | RADAR Research Data Repository - FIZ Karlsruhe | ||||||||||||||||||||||||||||||||||||
| Refereed publication: | No | ||||||||||||||||||||||||||||||||||||
| Open Access: | No | ||||||||||||||||||||||||||||||||||||
| DOI: | 10.35097/1700 | ||||||||||||||||||||||||||||||||||||
| Status: | Published | ||||||||||||||||||||||||||||||||||||
| Keywords: | Pol-InSAR PolSAR Multi-frequency Land cover classification Benchmark Coastal area Wadden Sea | ||||||||||||||||||||||||||||||||||||
| HGF - Research field: | Aeronautics, Space and Transport | ||||||||||||||||||||||||||||||||||||
| HGF - Program: | Space | ||||||||||||||||||||||||||||||||||||
| HGF - Program Themes: | Earth Observation | ||||||||||||||||||||||||||||||||||||
| DLR - Research area: | Raumfahrt | ||||||||||||||||||||||||||||||||||||
| DLR - Program: | R EO - Earth Observation | ||||||||||||||||||||||||||||||||||||
| DLR - Research theme (Project): | R - Aircraft SAR | ||||||||||||||||||||||||||||||||||||
| Location: | Oberpfaffenhofen | ||||||||||||||||||||||||||||||||||||
| Institutes and Institutions: | Microwaves and Radar Institute > SAR Technology | ||||||||||||||||||||||||||||||||||||
| Deposited By: | Scheiber, Dr.-Ing. Rolf | ||||||||||||||||||||||||||||||||||||
| Deposited On: | 19 Jan 2024 11:10 | ||||||||||||||||||||||||||||||||||||
| Last Modified: | 04 Jun 2024 15:34 |
Repository Staff Only: item control page