elib
DLR-Header
DLR-Logo -> http://www.dlr.de
DLR Portal Home | Impressum | Datenschutz | Kontakt | English
Schriftgröße: [-] Text [+]

Scenario-Based Synthetic Data Generation for an AI-based System Using a Flight Simulator

Sprockhoff, Jasper und Gupta, Siddhartha und Durak, Umut und Krüger, Thomas (2024) Scenario-Based Synthetic Data Generation for an AI-based System Using a Flight Simulator. In: AIAA SciTech 2024 Forum. AIAA SCITECH 2024 Forum, 2024-01-08 - 2024-01-12, Orlando, USA. doi: 10.2514/6.2024-1462. ISBN 978-162410711-5.

[img] PDF - Nur DLR-intern zugänglich
1MB

Offizielle URL: https://arc.aiaa.org/doi/10.2514/6.2024-1462

Kurzfassung

In recent years, algorithms based on machine learning have significantly advanced many technical areas, including computer vision. Since the performance of machine learning applications is data-dependent, a sufficient amount of high-quality data must be available to achieve robust and stable performance. However, the collection of large amounts of real-world data that covers the operational parameters of the AI-based system is often a difficult task because of availability, cost, or even potential danger. Therefore, synthetic data generation is often used to supplement data sets with additional required data samples. In this paper, we propose a baseline for an automated toolchain to generate synthetic image data of aircraft for machine-learning computer vision applications using a flight simulator. Scenario-based approaches have shown applicability to systematically generate valid test cases for system safety evaluation. We leverage a similar approach to generate data for training of AI-based systems. Our approach requires the user to create scenario models using our modelling tool. These models define the operational ranges for a set of parameters that characterize executable scenarios. The scenarios defined by the models are used to automatically produce images from simulations carried out with the FlightGear open-source flight simulator. We distinguish between a static and a dynamic simulation approach. The static approach generates a sequence of independent scenes, while the dynamic approach creates situations that mimic a collision avoidance scenario. With our approach, we can automatically generate large amounts of raw image data covering the relevant parameter ranges based on the models created by the user.

elib-URL des Eintrags:https://elib.dlr.de/202056/
Dokumentart:Konferenzbeitrag (Vortrag)
Titel:Scenario-Based Synthetic Data Generation for an AI-based System Using a Flight Simulator
Autoren:
AutorenInstitution oder E-Mail-AdresseAutoren-ORCID-iDORCID Put Code
Sprockhoff, JasperJasper.Sprockhoff (at) dlr.dehttps://orcid.org/0009-0005-5725-0726150911876
Gupta, SiddharthaSiddhartha.Gupta (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Durak, UmutUmut.Durak (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Krüger, Thomasthomas.krueger (at) dlr.deNICHT SPEZIFIZIERTNICHT SPEZIFIZIERT
Datum:4 Januar 2024
Erschienen in:AIAA SciTech 2024 Forum
Referierte Publikation:Ja
Open Access:Nein
Gold Open Access:Nein
In SCOPUS:Ja
In ISI Web of Science:Nein
DOI:10.2514/6.2024-1462
ISBN:978-162410711-5
Status:veröffentlicht
Stichwörter:Artificial Intelligence, Machine Learning, Synthetic Data, Computer Vision, Collision Avoidance, Scenario Modelling, Scenarios, Operational Design Domain, ODD, Flight Simulator, FlightGear
Veranstaltungstitel:AIAA SCITECH 2024 Forum
Veranstaltungsort:Orlando, USA
Veranstaltungsart:internationale Konferenz
Veranstaltungsbeginn:8 Januar 2024
Veranstaltungsende:12 Januar 2024
Veranstalter :American Institute of Aeronautics and Astronautics
HGF - Forschungsbereich:Luftfahrt, Raumfahrt und Verkehr
HGF - Programm:Luftfahrt
HGF - Programmthema:Komponenten und Systeme
DLR - Schwerpunkt:Luftfahrt
DLR - Forschungsgebiet:L CS - Komponenten und Systeme
DLR - Teilgebiet (Projekt, Vorhaben):L - Flugzeugsysteme
Standort: Braunschweig
Institute & Einrichtungen:Institut für Flugsystemtechnik > Sichere Systeme und System Engineering
Institut für KI-Sicherheit
Hinterlegt von: Sprockhoff, Jasper
Hinterlegt am:17 Jan 2024 11:21
Letzte Änderung:26 Nov 2024 14:32

Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags

Blättern
Suchen
Hilfe & Kontakt
Informationen
electronic library verwendet EPrints 3.3.12
Gestaltung Webseite und Datenbank: Copyright © Deutsches Zentrum für Luft- und Raumfahrt (DLR). Alle Rechte vorbehalten.