Evangelisti, Luca (2023) Probabilistic Robustness Analysis with Aerospace Applications. Dissertation, Technische Universität Dresden.
Dieses Archiv kann nicht den Volltext zur Verfügung stellen.
Offizielle URL: https://nbn-resolving.org/urn:nbn:de:bsz:14-qucosa2-881689
Kurzfassung
This thesis develops theoretical and computational methods for the robustness analysis of uncertain systems. The considered systems are linearized and depend rationally on random parameters with an associated probability distribution. The uncertainty is tackled by applying a polynomial chaos expansion (PCE), a series expansion for random variables similar to the well-known Fourier series for periodic time signals. We consider the linear perturbations around a system's operating point, i.e., reference trajectory, both from a probabilistic and worst-case point of view. A chief contribution is the polynomial chaos series expansion of uncertain linear systems in linear fractional representation (LFR). This leads to significant computational benefits when analyzing the probabilistic perturbations around a system's reference trajectory. The series expansion of uncertain interconnections in LFR further delivers important theoretical insights. For instance, it is shown that the PCE of rational parameter-dependent linear systems in LFR is equivalent to applying Gaussian quadrature for numerical integration. We further approximate the worst-case performance of uncertain linear systems with respect to quadratic performance metrics. This is achieved by approximately solving the underlying parametric Riccati differential equation after applying a polynomial chaos series expansion. The utility of the proposed probabilistic robustness analysis is demonstrated on the example of an industry-sized autolanding system for an Airbus A330 aircraft. Mean and standard deviation of the stochastic perturbations are quantified efficiently by applying a PCE to a linearization of the system along the nominal approach trajectory. Random uncertainty in the aerodynamic coefficients and mass parameters are considered, as well as atmospheric turbulence and static wind shear. The approximate worst-case analysis is compared with Monte Carlo simulations of the complete nonlinear model. The methods proposed throughout the thesis rapidly provide analysis results in good agreement with the Monte Carlo benchmark, at reduced computational cost.
elib-URL des Eintrags: | https://elib.dlr.de/202032/ | ||||||||
---|---|---|---|---|---|---|---|---|---|
Dokumentart: | Hochschulschrift (Dissertation) | ||||||||
Titel: | Probabilistic Robustness Analysis with Aerospace Applications | ||||||||
Autoren: |
| ||||||||
Datum: | 23 Oktober 2023 | ||||||||
Referierte Publikation: | Ja | ||||||||
Open Access: | Nein | ||||||||
Gold Open Access: | Nein | ||||||||
In SCOPUS: | Nein | ||||||||
In ISI Web of Science: | Nein | ||||||||
Status: | veröffentlicht | ||||||||
Stichwörter: | Robust Control, Polynomial Chaos Series Expansion, Linear Fractional Transformation, Gaussian Quadrature, Aircraft Automatic Landing | ||||||||
Institution: | Technische Universität Dresden | ||||||||
Abteilung: | Professur für Flugmechanik und Flugregelung | ||||||||
HGF - Forschungsbereich: | Luftfahrt, Raumfahrt und Verkehr | ||||||||
HGF - Programm: | Luftfahrt | ||||||||
HGF - Programmthema: | Komponenten und Systeme | ||||||||
DLR - Schwerpunkt: | Luftfahrt | ||||||||
DLR - Forschungsgebiet: | L CS - Komponenten und Systeme | ||||||||
DLR - Teilgebiet (Projekt, Vorhaben): | L - Flugzeugsysteme | ||||||||
Standort: | Oberpfaffenhofen | ||||||||
Institute & Einrichtungen: | Institut für Systemdynamik und Regelungstechnik > Flugzeug-Systemdynamik | ||||||||
Hinterlegt von: | Looye, Dr. Gertjan | ||||||||
Hinterlegt am: | 15 Jan 2024 09:14 | ||||||||
Letzte Änderung: | 15 Jan 2024 09:14 |
Nur für Mitarbeiter des Archivs: Kontrollseite des Eintrags